
7

G
at

he
rin

g
th

e
D

at
a

Filters

Preview

SQL Queries

Groups

Record Tagging

Relationship Tree

In This Chapter This is another one of those fun chapters for me to write, and in this writ-
ing I’m going to incorporate the Relationship Tree which, although it
has been around for a while, I have yet to really discuss in any of my

previous books. Prior to GoldMine Premium, the Relationship Tree was
known as the Organization Tree, but we’ll get into more of that later in this
chapter.

How useful is the data if you can not easily access that data, or find informa-
tion contained within the database? It’s not very useful at all. Users must be
able to cluster the data for mail merges, fax blasts, e-mail blasts, by products
purchased, or by any number of various attributes, and GoldMine has five
separate ways to perform these sorts of activities.

In this chapter, I am going to introduce you to Filters, Preview, SQL Queries,
Groups, Record Tagging and the Relationship Tree, in that order. I say,
in that order, as this order is not the same one as is presented on Filters and
Groups dialog form shown below in Figure 7-1. I am intentionally presenting
these to you in this order as Groups could, as well, be built based upon a
SQL Query, and I thought that it would be best if I covered the SQL Query
ahead of Groups for that very reason.

What are the distinguishing characteristics or the three methods? Well, Fil-
ters and Groups can be activated, and used, once created, for mail merges,
fax blasts, etcetera. On the other hand, the SQL Query only pulls data from
the different tables into a single query table. The resulting table is normally
referred to as a cursor. You can not activate the results of the SQL Query
and, in turn, use it as you would a Filter or a Group. You can, as I stated
earlier, build a group of records based on the AccountNos in the cursor, but,
and more importantly, you could select Output to ► Microsoft Word, Mi-
crosoft Excel or to the Clipboard directly from within the cursor. I would
point out that there is a similar Output to ► option for Groups, but it doesn’t
put out anywhere near the information that can be gathered through a single
SQL Query. In fact, this option, from within Groups, only sends the Member,
Sort, and Reference information to Word or Excel. Therefore, in short, Fil-
ters and Groups point to the contact records that contain the information that
you are seeking, where as the SQL Query result cursor actually contains the
information itself, and not just pointers to records.

What is the difference between a GoldMine Filter and a GoldMine Group?
An excellent question, indeed. They both display records based on some
predefined criterion. The filtered information is, however, Dynamic while the
grouped information is Static. Any time a Filter is activated against a da-

Figure 7-1

Note
The View Filters: field is no longer
sticky in GoldMine Premium. This
means when the user closes the Fil-
ters and Groups dialog form, the se-
lected UserID will no longer be saved.
The next time this user enters the
Filters and Groups dialog form, they
will enter it displaying the filters of the
logged in UserID.

Gathering the Data
GoldMine Premium - The Definitive Guide

148

tabase, all of the records that meet the filter condition(s) will be available for various activities that
employ filtered sets. On the other hand, Groups are a fixed list of records that are created at the
time that the individual Group is built. The pointers to the records included in the Group are stored
in the ContGrps table. This is more of a snapshot in time of which records met your conditions at
the time that the Group was created. Yes, one can add to a Group after its has been built, changing
that particular Groups point in time. One must remember to perform that step prior to deploying the
Group in activities that work with subsets of records. Filters - Dynamic versus Groups - Static,
quite a significant difference in result sets wouldn’t you say?

There is another significant difference between Filters and Groups. Using the GUI, filters can only
be built against information contained in the Contact1 and Contact2 tables. A group, however,
may be generated based on filtered records, previewed records, SQL queried records, scheduled
calendar activities, complete history activities, supplemental contact data, tagged records or search
results. Wow! Static, though they are, one could build a list of accounts based on virtually any table
in the GoldMine database that contains the AccountNo field.

As I stated, I will begin with the Filters tab. I like to envision a filter as a sieve. One selects the size
of the screen on the sieve (the condition), and when the sieve is filled with grains of sand, only those
that meet the sieve screen size pass through. All other grains of sand are still in the sieve, however,
one can only work with the material on the ground that has made it past the sieve screen.

Let’s discuss the basic use of the filter GUI first, and then we can continue on into some more ad-
vanced material. Referring to Figure 7-1 on the previous page, the first field that one encounters is
the View Filters: field. Here, if the user has the proper rights, is a drop-down list of all of the users
that GoldMine has within its system, as well as the one group (public). Filters are created for a
specific UserID or for the (public) user category. Any user, having proper access rights, may employ
any filter constructed by any other user. In as much, it is important, when naming a filter, that the
creator be cognizant of the fact that other users must be able to distinguish from the Filter Name
exactly what the filter will accomplish.

Now, click on the New button
to bring up the New Filter dia-
log form as shown here in Fig-
ure 7-2. The first field that is
available, is the Filter Name:
field. This is the field where
the user is asked to supply
as descriptive a representa-
tion of the filter as the allotted
space permits. For this ex-
ample, I would insert into this
field, Created On > 8/1/2009
- CreateOn Field. I will
leave the Owner: field set at
DJ (DJ Hunt), and, at this
point in time, the Filter Ex-
pression: field will remain
empty until we have finished
building this new filter.

Click on the Build tab to bring
up the dialog form shown here
in Figure 7-3. This is the GUI
that is utilized to build the fil-
tering condition(s). There are
three input fields, the first two
are drop-down list, while the
third is a text based field. The
first list field contains the Field
name: list. Clicking on the
drop arrow to view the list, the
user should notice that only
those fields that are contained
in their Contact1 and Con-
tact2 tables appear in this list.
For example, the user will not
see e-mail address in this list,
as the e-mail address is con-

tained in the ContSupp table. For this example, I am selecting the CreateOn field from the drop list.

Filters

Note
I’ve been meaning to ask FrontRange
why they maintain the use of the
� dBase Expr. radio button in the
New Filter dialog form in GoldMine
Premium.

Figure 7-2

Figure 7-3

Gathering the Data
GoldMine Premium - The Definitive Guide

149

In the next field, the Operator: field, I will select Greater or Equal from its drop list. The user will
notice that the operators are in plain English. Here is a list of the available operators in this drop list:

Equal to
Not Equal to
Greater than
Less than
Greater or Equal
Lesser or Equal
Begins with
Contains
Does Not Contain
Is Empty
Is Not Empty

In the Value: field, I have entered 8/1/2009, and at this point, I would click on the Insert Condi-
tion button which will append to the memo field, in plain English, Createon is Greater or Equal
“8/1/2009”. I could add more to this expression using the .and. or the .or. option, but for this exercise
let’s just click on the OK button to save the filter.

In my 4607 record database, if I right-click on this filter to bring up the local menu, and if I select
Count... from the local menu, the filter returns a result of Count: 8 (0.2%). This count is returned in
milliseconds without having employed the Optimization feature for the filter. This filter may not work
well against older GoldMine installations, however, as the Contact1.CreateOn field is a relatively
new field to the GoldMine tables. Old time GoldMine users may have a number of records with no
data in the Contact1.CreateOn field.

Up until recent releases, GoldMine had always derived the create on date by analyzing the Ac-
countNo field. After FrontRange incorporated the Contact1.CreateOn field into GoldMine, they
needed to come up with something that would allow older upgrading users to access the created on
date information. The result was the creation of the accdate() function (Refer to Appendix A). This
function can extrapolate the creation date using the Contact1.AccountNo field, however, unlike
previous versions of GoldMine, in GoldMine Premium you cannot create a dBase expression unless
you can create an equivalent SQL where clause. Hence, based on our knowledge of the Contact1.
AccountNo field (refer to Chapter 8 - The Tables), we know that the first 6 characters of the Con-
tact1.AccountNo field are the create on date.

Click on the New button again. This time, let’s give a Filter Name: of Created On > 8/1/2009 Using
AccountNo. Now, instead of clicking on the Build tab, select the � dBase Expr. radio button, and
then click on the Edit Expression button. This should bring you into the Edit Expression dialog
form where you are free to type whatever legal dBase expression you desire. I’ll show you other
uses for this later.

Here is the expression that I would like you to type into this field:

left(AccountNo, 6) >= [A90801]

Now, instead of clicking on the Build tab, select the � SQL Query radio button, and then click on the
Edit Expression button. This should bring you into the Edit Expression dialog form where you are
free to type whatever legal SQL where clause that you desire.

Here is the where clause as I have it entered:

left(C1.AccountNo, 6) >= ‘A90801’

You may have noticed, al-
though I did not type the
WHERE portion of the clause,
that it still appears in the
dialog form, Figure 7-4. The
dBase & SQL expressions
equate, hence, the OK but-
ton is enabled, and I can save
this filter. Best of all, it too will
function as expected. This,
however, is not a very dy-
namic filter as it must be modi-
fied each time that you plan to
place it in use. I think that I
prefer the old ways where you
could put in a dBase expres-
sion or a where clause, and
it would evaluate properly.

Tip
In past versions of GoldMine, particu-
larly the GoldMine Standard Edition,
I would have employed the Optimize
tab, and its ability to speed up filters
by using existing GoldMine Indexes.
To date, I have found that using this
feature in GoldMine Premium has no
effect on positive performance, and,
conversely, sometimes causes the fil-
ter to not function properly.

The reader is advised to test this
feature against the version of Gold-
Mine that they are using to determine
whether its usage is beneficial to their
needs.

The reader is further advised, if
they wish to Optimize their expres-
sions, that they do so by modifying
the dBase and SQL expressions
utilizing the indexed mirror fields
(refer to Chapter 8 - The Tables)
when possible. All of the indexed mir-
ror fields begin with U_ such as:

Company mirrored to U_Company

Note
I’ve been meaning to ask FrontRange
why they maintain the use of the
� dBase Expr. radio button in the
New Filter dialog form in GoldMine
Premium.

Figure 7-4

Gathering the Data
GoldMine Premium - The Definitive Guide

150

Where we could have created more dynamic filters before, we are more hampered in GoldMine
Premium unless you are extremely fluent in SQL Query development.

Once completed, click on the OK button of the Edit Expression dialog form, and then on the OK but-
ton of the New Filter dialog form. Now you should be back to the Filters and Groups dialog form,
right-click on the new filter and select Count... from the local menu. Against my database the results
were Count: 12 (0.3%), and there was no discernible difference in process speed.

In previous books I was able to address this question from the forum: “How can I build a filter for all
of my contacts that have an e-mail address?” Alas, GoldMine Premium has taken away this ability
to the best of my knowledge. No longer can you utilize:

.not. empty(&EmailAddress)

.not. empty(Fax) .and. empty(&EmailAddress)

upper(c1.Phone1) > ‘ ‘
 and c1.AccountNo not in
 (select AccountNo
 from ContHist
 where (OnDate+30) >= getdate())

That is, unless you can devise a SQL where clause, or a dBase expression, to match the converse
of these items. So let me now show you how this needs to be done in todays GoldMine Premium.

Let’s start by creating a New Filter, and we’ll call it: Contacts with E-mail Address. Good. Now
let’s click on the radio button for � dBase Expr., and then on the Edit Expression button. In the
Edit Expression dialog form, enter:

.not. empty(&EmailAddress)

You remember that dBase expression, don’t you? Go ahead and click on the OK button. No change
yet from the old days, however, we now need to balance the equation with a comparable SQL Where
clause. Let’s select the radio button � SQL Query, and then on the Edit Expression button again.
This time, however, in the Edit Expression dialog form, we’ll enter:

C1.AccountNo in
 (select AccountNo
 from ContSupp
 where U_CONTACT = ‘E-MAIL ADDRESS’
 and Zip like ‘_1%’)

Now let’s click on the OK button on the Edit Expression dialog form, and then again on the OK but-
ton on the Filter: dialog form. That’s it, we’re done. Right-click on the Filter and select Count... from
the local menu. My count shows: Count: 3873 (84.0%), and took less than a second to generate
that number.

Here are the expressions for the converse of the above filter, Contacts without a Primary E-mail
Address:

empty(&EmailAddress)

C1.AccountNo not in
 (select AccountNo
 from ContSupp
 where U_CONTACT = ‘E-MAIL ADDRESS’
 and Zip like ‘_1%’)

My Bad! My editor picked this up. I had stated on the first page that I wanted to include two new
sections in this chapter for this book. One was the Preview section, while the other was the Rela-
tionship Tree section. Low and behold, I forgot both sections, hence, the Editors rejection of the
manuscript.

Looking back at Figure 7-1, you may have noticed the Preview tab in between the Filters tab and the
SQL Query tab. It is here that FrontRange has chosen to enhance the GoldMine Filters. Before we
leave the Filters, however, let’s create two rather simplistic filters to use in this exercise.

The first to select all of my Clients for which I maintain a marker in the Contact1.Key1 field labeled
Category.

Category (Key1) Contains Client

Note
You will not be able to enter Carriage
Returns or Line Feeds, and the where
clause is shown here formatted for
presentation purposes only. Your
where clause will be in one continuos
line.

Preview

Gathering the Data
GoldMine Premium - The Definitive Guide

151

Now I’m going to create another filter where:

State Equal to MA

As that filter was the last filter
that I created, it remains high-
lighted (selected). While this
filter is highlighted, let’s choose
the Preview tab, refer to Figure
7-5. In the upper box you’ll no-
tice our filter � In English as
opposed to being In dbase, and
it is:

State is Equal to “MA”

Normally, the second box would
have been blank at this point,
however, for Figure 7-5, I had
already clicked up the Search
All button which delivered 237
records.

Now let’s go back to the Filters
tab, and highlight the All Clients
filter. Immediately thereafter,
switch back to the Preview tab,
and look at the top box this time.
You’ll notice that it now contains
this filter expression in English.

Category (Key1) Contains
“Client”

However, if I click upon the Drill
Down button, and I did for Figure
7-6, you’ll notice that the expres-
sion has changed to:

(State is Equal to “MA”) AND
(Category (Key1) Contains
“Client”)

On top of that you’ll want to look
at the new Count: 80 figure.
Now I know that this simple filter
could have been built from the
Filter tab, however, take this to
the level of a couple of compli-
cated filters, and you have a nice
system. Especially when you re-
alize that you can now click upon
the Save button to update the in-
formation in the highlighted filter
on the Filters tab, or to create a totally new filter utilizing the expression now created.

Alternatively, you could modify the expression right from the Preview tab, by clicking on the Build
Filter button. WOW! Can it get any easier?

I consider the SQL Query to be the most under utilized gem contained within the GoldMine applica-
tion. Think about it, people have paid me $249.00 for my Beyond Gold application (no longer avail-
able) to export the other Contacts from their GoldMine ContSupp table when they could have just
as easily utilized the SQL Query tool in GoldMine. Individuals get fixated on the fact that GoldMine
can not export anything except information from the Contact1 and Contact2 tables unless exporting
to GoldMines own interpretation of XML. They go to the forums and ask, often, “I have to send a
list of other contacts to a mailing house, how can I export this information?”. Then you see all of the
third party solution providers hawking their wares, as I recently saw it stated, and forgetting to even
mention that this could just as easily be accomplished within the GoldMine product itself.

By the way, it is my personal policy, when answering questions in the forums, to only give the Gold-
Mine solution answer to the question unless there is no GoldMine solution. Then, and only then, do

Figure 7-5

Figure 7-6

SQL Queries

Gathering the Data
GoldMine Premium - The Definitive Guide

152

I mention the possibility of trying a third party product. Have you noticed that this is a particular sore
spot for me?

All right, let’s move on then. As a prerequisite to something that I am going to attempt, I would ask
you to go to any record, that is in the State of California or Georgia. As an additional requirement,
you want to make sure that the record has Additional Contacts. Double-click on any of the Additional
Contacts to bring up the Additional Contact at ... dialog form. Place an X in the þ Merge: field,

and then click on the OK button.
We are going to want to use that
later.

Good, now that this prerequisite
is established, let’s start out by
saying that you want to send a
list of Additional Contacts, that
are linked to a primary contact
record, and where the primary
record resides in the state of
California or the state of Geor-
gia, to a mailing house. An
awkward and possibly unrealis-
tic request I know, but this will
serve as the basis for my first
example.

Looking here at Figure 7-7, in
the medium size box just under
the user name, let’s type the fol-
lowing:

select CS.*
from Contact1 C1,
 ContSupp CS
where C1.AccountNo = CS.AccountNo
 and C1.State in (‘CA’, ‘GA’)
 and CS.RecType = ‘C’

Clicking on the Query button against my dataset pulled 238 records (we use to be told the seconds
that had evolved, however, in GoldMine Premium this is no longer the case). Just so that you
know, my dataset currently has 4,613 records (I cleaned up my database since my last book), so
238 records pulled from that in less then a second is not too shabby. By the way, this and any SQL
select statement, can not contain any carriage returns or line feeds. The select statement above
contains line feeds, carriage returns, and spaces. As of this writing, GoldMine is very forgiving, and
should you accidently include any of these in your select statement, GoldMine is currently ignoring
their inclusion.

So let’s talk about this statement a little. To keep my typing to a minimum, I used what is called alias-
ing of the table names. Look at the from clause in the statement above to see how I accomplished
this. I stated the actual table name trailed by a space, and then the alias name for the table as,
Contact1 C1. I am working against two tables, so I separated them in the from clause of the state-
ment by a comma (,). Now that I have aliased the table names, I can use the alias everywhere else
instead of typing out the full table name each time.

My select statement itself, states, display all fields from the CS (ContSupp) table. I used the wild
card, the asterisk (*) to accomplish this. I then proceeded to set up some conditions for pulling the
information. Conditions, haven’t I heard that someplace before? Another name for a condition is a
filter. Yes, I am filtering our tables using conditions. The first condition is what is called a simple join
clause. I am saying to only look at records where there is a match between the C1.AccountNo field
and the CS.AccountNo field. Remember that the AccountNo field is the primary relationship key
between most of the database tables within GoldMine.

Now that I have joined the two tables, effectively making them one big table, I can apply additional
conditions. In this example, you’ll remember, I only wanted the other contacts if the primary contact
was from the state of California or Georgia. Therefore, my next condition and C1.State in (‘CA’,
‘GA’). Now both conditions, the join and this statement, must return a True, based on the Boolean
and, before the fields will be displayed in the query result window.

Lastly, I needed to add one more condition. The ContSupp table contains many records of varying
types that are linked to a single contact record. As I am only looking for Additional Contacts to
the primary record, I am not interested in any Detail records, Linked Documents, or Referrals to
name a few of the possible records that could be pulled from the ContSupp table. Records in the
ContSupp table are differentiated by type in the RecType field.

As a general rule, you should not copy
and paste from this book as things like
“Variable” have styles associated with
them, and we often use line wrapping
for better book presentation. Most of
this information will not translate well
when pasted elsewhere.

All SQL Queries discussed in this
book are included in a NotePad cre-
ated document from which you may
copy and paste directly into GoldMine.

WARNING Figure 7-7

Gathering the Data
GoldMine Premium - The Definitive Guide

153

The following values are possible type values contained in the RecType field:

A	 Record Alerts
C	 Additional contact record
E	 Automated Process attached Event
H	 Extended detail header
L	 Linked document
O	 Relationship tree
P	 Detail record (formerly known as a Profile record)
R	 Referral record

As I am only interested in additional contacts to the primary record, I segregated that set using the
and CS.RecType = ‘C’ clause in my statement. For now I ask you to click on the Save button, and
save this query. This is a very nice feature, unlike the Groups, as you will see later, which you have
to rebuild from scratch each and every time, GoldMine allows you to save the SQL Query to be uti-
lized again and again as often as you want. I would remind you, when naming your query that you
should name it such that, a year from now when you look at that name, you will know from the name
exactly what the query does. As always, you are limited in the number of characters, 40 in this case,
when naming a query, so use them wisely.

After you have saved the query, let’s try to run it against your database by clicking on the Query but-
ton. Against my database of 37,520 ContSupp records, this query pulled 238 records.

Now I want to change the requirements a little. Everything as before applies, except that I don’t want
to show all of the fields in the ContSupp table. I only want to display the fields necessary to do a
mailing. Additionally, I want to make certain that the records in question have an address. What
good is a mail list without addresses? This, then, would cause our select clause in the statement to
change to the following:

select CS.Contact,
 CS.Title,
 CS.Address1,
 CS.Address2,
 CS.Address3,
 CS.City,
 CS.State,
 CS.Zip,
 CS.AccountNo
from Contact1 C1, ContSupp CS

This, then, would cause our where clause in the statement to change to the following:

where C1.AccountNo = CS.AccountNo
 and C1.State in (‘CA’, ‘GA’)
 and CS.RecType = ‘C’
 and CS.Address1 is not null
 and CS.Address1 > ‘’

Let’s save this again, but this time, select to update the current query. Now run this query, and you
should have culled your query results down. Against my database of 37,520 ContSupp records,
this query pulled 238 records again. I told you that I cleaned up my database before journeying into
this book.

Well let’s cull it down even further. This is a Christmas Specials mailing that I am sending to my
clients through the mailing house. I only want to send this mailing to those that are designated in our
database as wanting to receive this type of mailing.

Let’s try this now:

select CS.Contact,
 CS.Title,
 CS.Address1,
 CS.Address2,
 CS.Address3,
 CS.City,
 CS.State,
 CS.Zip,
 CS.AccountNo
from Contact1 C1, ContSupp CS
where C1.AccountNo = CS.AccountNo
 and C1.State in (‘CA’, ‘GA’)
 and CS.RecType = ‘C’
 and CS.Address1 is not null
 and CS.Address1 > ‘’
 and CS.MergeCodes like ‘%X%’

Even though CS.AccountNo is not
required by the mailing house, it is re-
quired so as to bind the Join properly.

WARNING

Note
Refer to Chapter 8, The Tables for a
complete understanding of the Cont-
Supp table, and it’s various RecType
values.

Gathering the Data
GoldMine Premium - The Definitive Guide

154

Did I throw you a curve there? I hope not. As there could be many codes in the 20 character Merge-
Codes field, I only wanted the record if one of those merge codes was an X. To do that I put in the
wild card percent (%). By putting one before, and after the X, I am stating that I don’t care if there
is anything to the left of the X, and I also don’t care if there is anything to the right the X. I just want
to know if there is an X contained anywhere in the MergeCodes field.

Running this query, if you followed our prerequisite setup, should result in one record which, by coin-
cidence is how many records I happened to pull. Probably not worth using the mailing house for this
few? For this book, however, I will send the name over. The mailing house doesn’t have GoldMine,
and I can’t export this, as the information is contained in the ContSupp table. How am I going to
get this over to the mail house? The answer is simple. I can get this information over to them in any
format that they can handle. I am just going to do it by going through Microsoft Excel first. Obviously,
I make the rash assumption that you have Microsoft Excel installed on your computer.

Over your query result table (the cursor), right-click anywhere and select Output to ► Excel..., and
watch what happens. Excel should start, and the query table with the field names should have been
populated on an Excel spreadsheet. Everything should be highlighted, so the user would immedi-
ately want to go to the Excel menu and select Format ► AutoFit Column Width selection in Excel
2007. That will adjust the column widths to show all of the data properly. Now it is simply a matter of
selecting the Save As..., and then saving the spreadsheet as any file format that your mailing house
can handle. The dBase option is no longer available as of Office 2007, however there are many
other file types such as .xls, .csv, and more file to which you could save this file. You could then send
that file on to the mailing house for their processing as an attachment to an e-mail message. Slick,
quick, and you never left your chair.

Now, is there really any need to go out, and to purchase those third party tools to enable exporting
from areas in GoldMine that are not part of the Contact1/Contact2 tables? I think not. I think that
you can both save your money, and you can have lots of fun designing your own queries to pull data
that your organization can use in various formats. For the rest of this section in this chapter, I will just
give you a few queries that are most often requested, and which may be useful to your organization
as well. Even if they, themselves, are not useful they may contain elements that will help you in your
own design of a SQL Query.

I don’t know why, but some bug in GoldMine can cause contact records to be assigned more than
one Primary E-mail Address. Obviously this would not be good when doing blast e-mails to clients.
Here is a select statement that will display the account number, and the number of designated Pri-
mary E-mail Addresses for each contact record that has more than one designated Primary E-mail
Address account. After running this select, should you have any results, you must take care to as-
sign only one Primary E-mail Address for the specified record.

n Contacts - with > 1 Designated Primary E-mail Address

select distinct AccountNo,
 count(*)
from ContSupp
where RecType = ‘P’
 and Contact = ‘E-mail Address’
 and Zip like ‘_1%’
 group by AccountNo
 having count(*) > 1

I would like to point out the number of underscores as this is very important, and there is only one.
There is one underscore before the 1 as a single charater wild card. The % is a generic wild card.

 and zip like ‘_1%’

The underscore acts as a single character wild card. So in this case, I am stating that I don’t care
what is in positions 1, 3 & 4 of the ContSupp.Zip field, but that the second character must contain
a 1. This is another form of wild card usage when building your SQL Queries, and you should keep
it in mind as it does come in handy when you are looking for a specific character at a specific posi-
tion. You could, of course, also have used the substring() function to cull out the right character(s).

Now that you have found, and corrected all of those records that had multiple Primary E-mail Ad-
dresses, you may want to do an e-mail blast mailing to all of those contact records that have a
Primary E-mail Address.

n Contacts w/Primary E-mail Address

select distinct
 C1.AccountNo,
 C1.Company,
 C1.Contact,

If there is a Note (Image) type field
in your query result, and if that note
contains carriage returns, line feeds
or both, then the Output to ► Excel...
may not be a viable option. CR and
LF in a note, when sent to Excel, could
produce some unexpected, and dif-
ficult to handle data representations.

WARNING

Note
You must be vigilant in your database
maintenance. I just ran this query
to test it for the book, and found two
more records in this state in my sys-
tem.

In earlier versions of GoldMine Pre-
mium, I have noticed that this query
does not display the Primary E-mail
Address in all cases on the first run. I
have found it necessary, for whatever
reason, to refresh the Primary E-mail
Address switch for the records, and
from then on the query has functioned
as expected.

WARNING

Gathering the Data
GoldMine Premium - The Definitive Guide

155

 CS.ContSupRef+CS.Address1 as ‘E-mail’
from Contact1 C1,
 ContSupp CS
where C1.AccountNo=CS.AccountNo
 and CS.Contact=’E-mail Address’
 and CS.Zip like ‘_1%’

Here we go with the reverse situation. I need to know all of those records that do not have a Primary
E-mail Address. Who knows, maybe you want to mail them a merge letter (how passé) instead.
Well that select statement is a slight modification of the one above.

n Contacts w/o Primary E-mail Address

select AccountNo,
 Company,
 Contact,
 Address1,
 Address2,
 City,
 State,
 Zip
from Contact1
where AccountNo not in
 (select C1.AccountNo
 from Contact1 C1,
 ContSupp CS
 where C1.AccountNo=CS.AccountNo
 and CS.Contact=’E-mail Address’
 and CS.Zip like ‘_1%’)

There you go. All the names in your database that do not have a Primary E-mail Address, and all
packaged together nice and neat, ready for your mailing house to process. Well this is really nifty
isn’t it? I am doing a double select statement again, and as before, I am locating all of those that
have a Primary E-mail Address. Notice the not in piece of the statement. If I have a list of those
that have a Primary E-mail Address, comparing it to our list of all contacts, then those that are not in
the first list but are in the second list must be those without a Primary E-mail Address. Maybe a bit
confusing, but after you get a few of these under your belt it’ll be natural to you.

Well then, you are in GoldMine Premium Edition so why not combine all of the information from your
Primary Contacts and Additional Contacts?

n Contacts & Add Contacts w/E-mail

select AccountNo,
 Company,
 Contact,
 Address1,
 Address2,
 City,
 State,
 Zip,
 Phone1,
 (select top 1 ContSupRef+Address1
 from ContSupp CS
 where CS.AccountNo = C1.AccountNo
 and Contact = ‘E-mail Address’
 and Zip like ‘_1%’
) as ‘E-mail’
from Contact1 as C1
union select CS.AccountNo,
 CS.Address3 as Company,
 CS.Contact,
 CS.Address1,
 CS.Address2,
 CS.City,
 CS.State,
 CS.Zip,
 CS.Phone,
 CS2.ContSupRef+CS2.Address1 AS Email
from Contact1 C1,
 ContSupp CS,
 ContSupp CS2
where C1.AccountNo=CS.Accountno
 and CS.RecID = CS2.LinkAcct
 and CS.RecType=’C’
order by C1.Company,
 C1.Contact

I have tested all of these select state-
ments by Copying & Pasting them
from this book into my GoldMine Pre-
mium Edition of GoldMine, and they
have all worked as expected, except
where specifically noted.

You should do the same, and not at-
tempt to retype them, however, you
must realize that the single and dou-
ble quotes are formatted, and must be
coverted to plain text in the SQL Query
analyzer before testing the query.

WARNING

Gathering the Data
GoldMine Premium - The Definitive Guide

156

Yup, I threw a union clause in there to achieve my goal, and, because of the rule that you must have
as many fields in the union table as are in the select table, I chose CS.Address3 (usually blank)
to fill the slot in the union side where there is actually no Company field. So we have now taken all
of the Contact information from our database, and placed it into a single cursor from where we can
output it to Excel or Word. This is an extremely handy query.

In my next select statement I want to show you another statement that is commonly requested. “I
would like to see all of the records in my database for which there has been no History over a defined
period of time.” In my example, I want those that have had no history within the last 30 days. Here
is an example of the select statement for GoldMine Premium that fulfills this request:

n Contacts w/o History in Last 30 Days

select Contact,
 Company,
 AccountNo
from Contact1
where AccountNo not in
 (select AccountNo
 from ContHist
 where OnDate + 30 >= getdate())
order by Company,
 Contact

Naturally, one might also be interested in those records that have had no history in the last 30 days,
and that are not scheduled for anything currently, or in the future. Getting complicated, huh? Let’s
see if we can compound this.

n Contacts Not Scheduled, and without History in Last 30 Days

select Contact,
 Company,
 AccountNo
from Contact1
where AccountNo not in
 (select AccountNo
 from ContHist
 where OnDate + 30 >= getdate())
 and AccountNo not in
 (select AccountNo
 from Cal)
order by Company,
 Contact

Where the Contacts w/o History in the Last 30 Days pulled 7,498 records from my database, Con-
tacts Not Scheduled w/o History in Last 30 Days pulled 7,450 records.

All right now, here are two more simple ones. In the older dBase versions of GoldMine, one had an
idea of how many records were in their Contact1 table by looking at the Summary tab Record: 2 of
19. With GoldMine Premium, and with all previous Corporate Edition installations of GoldMine, the
same does not hold true. A user can, however, acquire a count against any table with this simple
select statement:

n Count - Records in a Table

select count(*)
from Contact1

Well, what were you expecting? I did say it was simple. Let’s expand on that just a little. How many
user defined fields have you created in your GoldMine? Don’t know? Don’t feel like counting them
one by one in the User Defined Fields dialog form? Try this select statement:

n Count - User Defined Fields

select count(*)
from ContUDef
where Field_Name like ‘U%’

In previous releases of the Hacker’s Guide series of books, this was where I ended my discussions of
SQL Queries, however, as I have learned so much more about SQL Queries since my prior writings,
I thought that I would stick a few more queries into this section of this chapter. I needed to develop a
query for a client that I thought would be useful for you, my readers. It involves the use of the union
clause of the select statement.

GoldMine always likes to see the Ac-
countNo field in a query so that Gold-
Mine can synchronize to the Contact
record from the resulting cursor. If
GoldMine doesn’t see the AccountNo
in your select statement, GoldMine will
add it automatically. In a union select
this will cause problems unless you
add the AccountNo to both sides of
the union statement.

WARNING

Gathering the Data
GoldMine Premium - The Definitive Guide

157

Scenario: I wanted to select all of the companies for which the company name begins with Com-
puter. In addition, I wanted their Primary Contacts, and all of their Secondary Contacts. Here is the
select statement against GoldMine Premium to produce this result set:

n Contact/Additional Contacts - from Computer Companies

select Company,
 Contact,
 AccountNo
from Contact1
where Company like ‘Computer%’
Union select Contact1.Company,
 ContSupp.Contact,
 ContSupp.AccountNo
from Contact1,
 ContSupp
where Contact1.AccountNo=ContSupp.Accountno
 and ContSupp.RecType=’C’
 and Contact1.Company like ‘Computer%’
order by Company

The resulting cursor was com-
posed of some 29 records from
my GoldMine database. Figure
7-8 depicts the results of said
query against my GoldMine data-
base. As always, at this point,
we could select to Output To ►
Excel..., or to build a Group in
GoldMine Premium.

Okay, we all know that GoldMine
Premium is the perfect applica-
tion in that there are no bugs
contained there in, however, for
some reason many of my cli-
ents have come up with dupli-
cate records in their Contact2
table. We all know that this is a
no, no. Each record in the Con-
tact1 table can have one, and
only one, associated record in
the Contact2 table. To find out
which contacts have duplicate
Contact2 table records, if any, I
would run this query against their
GoldMine database:

n Duplicates - Contact2 Records by AccountNo

select count(*),
 AccountNo
from Contact2
group by AccountNo
 having Count(*) > 1

By the way, I just ran this against my Contact2 table of 4,618 records today, and there were no du-
plicate records found. I must be getting better at caring for my database. Should your table contain
duplicate records, you must immediately rectify the situation. There are a number of different ways of
accomplishing the task all of which would require their own book to explain. If you find that you have
duplicate records in the Contact2 table, then you would want to get together with your GoldMine
Partner to rectify the matter or you may hire our services if you currently do not have a GoldMine
Partner.

Okay, they said that it couldn’t be done within GoldMine, but I had always been able to prove them
wrong. “You cannot do an Update Query or a Delete Query from within GoldMine.”. Well, John Still-
man caught wind of what I was doing, and is no longer permitting Update or Delete queries from
within GoldMine in any form. He deemed that they are too dangerous, and I just have to agree with
John on this one. Beginning with GoldMine Premium you can no longer do an Update Query or a
Delete Query from within GoldMine.

Curse you John Stillman for taking away functionality in a program.

As the GoldMine Administrator, you
really do not want any duplicate Ac-
countNo records in your Contact2
table.

WARNING

Figure 7-8

Gathering the Data
GoldMine Premium - The Definitive Guide

158

I could not imagine that you would not be interested in some of these other queries, so here are a
few more for you to review:

n Accounts with Bad E-mail Addresses

select AccountNo,
 ContSupRef+Address1 as [E-Mail Address]
from ContSupp
where (Contact = ‘E-mail Address’)
 and isnull(ContSupRef, ‘’) <> ‘’
 and (select
 case
 when ContSupRef is null
 or charindex(‘@.’,ContSupRef + Address1) > 0
 or charindex(‘.@’,ContSupRef + Address1) > 0
 or charindex(‘..’,ContSupRef + Address1) > 0
 or charindex(‘”’, ContSupRef + Address1) <> 0
 or charindex(‘(‘, ContSupRef + Address1) <> 0
 or charindex(‘)’, ContSupRef + Address1) <> 0
 or charindex(‘,’, ContSupRef + Address1) <> 0
 or charindex(‘<’, ContSupRef + Address1) <> 0
 or charindex(‘>’, ContSupRef + Address1) <> 0
 or charindex(‘;’, ContSupRef + Address1) <> 0
 or charindex(‘:’, ContSupRef + Address1) <> 0
 or charindex(‘[‘, ContSupRef + Address1) <> 0
 or charindex(‘]’, ContSupRef + Address1) <> 0
 or right(rtrim(ContSupRef + Address1),1) = ‘.’
 or charindex(‘ ‘,ltrim(rtrim(ContSupRef + Address1))) > 0
 or len(ContSupRef + Address1)-1 <= charindex(‘.’, ContSupRef + Address1)
 or ContSupRef + Address1 like ‘%@%@%’
 or ContSupRef + Address1 Not Like ‘%@%.%’
 then 0
 else 1
 end) = 0

n Calendar - RecType A T O C, for UserID

select *
from CAL
where RecType in (‘A’, ‘T’, ‘C’, ‘O’)
 and UserID = ‘DJ’
order by OnDate

n Casting - Date & Functions

select top 100 cast(LastContOn as varchar),
 datepart(month,LastContOn) [Month 1],
 month(LastContOn) [Month 2],
 LastContOn,
 *
from Contact2
where LastContOn is not null

n Contact2 - Orphans

select AccountNo
from Contact2
where AccountNo not in
 (select Accountno
 from Contact1)

n Contacts - Not in any Group

select AccountNo,
 Company,
 Contact
from Contact1
where AccountNo not in
 (select distinct Accountno
 from ContGrps)

n Contacts - Record Age = 12 Months Old

select Contact1.Company,
 Contact1.Contact,
 datediff(Month, Contact1.CreateOn, getdate()) as [Age in months],
 Contact1.CreateOn
from Contact1 with (NOLOCK)
left outer join Contact2 with (NOLOCK)

As the GoldMine Administrator, you
really do not want any orphaned re-
cords in your Contact2 table.

WARNING

Note
I have introduced a couple of differ-
ences here that you should be aware
of. Notice the use of the specified join.

Also, notice the use of the square
brackets ([A]) instead of the single
quotes (‘A’) to delimit a string.

Gathering the Data
GoldMine Premium - The Definitive Guide

159

 on Contact1.AccountNo = Contact2.AccountNo
where (datediff(Month, Contact1.CreateOn, getdate()) = 12)

n Contacts - w/o Pending Activities

select Contact
from Contact1
where AccountNo not in
 (select C1.AccountNo
 from Contact1 C1,
 Cal
 where C1.AccountNo=Cal.AccountNo)

n Contacts - All include Primary E-mail Address if Exists

select AccountNo,
 Company,
 Contact,
 (select top 1 ContSupRef+Address1
 from ContSupp as CS
 where CS.AccountNo = C1.AccountNo
 and Contact = ‘E-mail Address’
 and Zip like ‘_1%’
) as Email
from Contact1 as C1

n Count - Accounts by Representative

select upper(Key4) as Representative,
count(distinct(Company)) as [# Contacts]
from Contact1
where Key1 like ‘%Client%’
 and Company > ‘’
group by Key4

n Count - Activites (Calendar) by UserID within a Date Range

select UserID,
 Count(AccountNo)
from Cal
where Ondate >= ‘9/1/2009’
 and OnDate <= ‘9/30/2009’
group by UserID

n Count - Activites (History) by UserID within a Date Range

select UserID,
 Count(AccountNo)
from ContHist
where Ondate >= ‘9/1/2009’
 and OnDate <= ‘9/30/2009’
group by UserID

n Count - by State

select State,
 count(State) as Count
from Contact1
group by State
order by State

n Count - of Cities in State of Massachusetts

select City,
 count(*) as [Count]
from Contact1
where State=’MA’
 and City > ‘’
group by City
order by City

n Count - Mail in Inbox for specific UserID

select UserID,
 count(UserID)
from Mailbox
where UserID = ‘DJ’
 and Folder = ‘X-GM-INBOX’
group by UserID

Gathering the Data
GoldMine Premium - The Definitive Guide

160

n Duplicate - Contacts by Contact/Phone

select count(*),
 Contact,
 Phone1
from Contact1
where Contact > ‘’
 and Phone1 > ‘’
group by Contact,
 Phone1
having count(*) > 1
order by Contact

n Duplicate - E-mail Addresses

select AccountNo,
 Contact,
 ContSupRef,
 Address1
from ContSupp
where ContSupp.Contact = ‘E-mail Address’
 and ContSupRef in (select ContSupRef
 from Contsupp
 group by ContSupRef
 having count(ContSupRef)>1)
order by ContSupRef

n Mailbox - Usage

select UserID,
 Folder,
 count(*)
from MailBox
where Folder not in (‘X-GM-INBOX’,
 ‘Sent’,
 ‘Filed’,
 ‘X-GM-DRAFTS’,
 ‘X-GM-FOLDERS’,
 ‘X-GM-GROUPS’,
 ‘X-GM-ICALINFO’,
 ‘X-GM-OUTBOX’,
 ‘X-GM-PROP-HTMLTAB’,
 ‘X-GM-HTMLTAB’,
 ‘X-GM-RULES’,
 ‘X-GM-TEMPLATES’,
 ‘X-GM-SUBSENT’,
 ‘X-GM-SUBFILED’,
 ‘X-GM-WEBIMPORT’,
 ‘X-GM-SMIME-CA’,
 ‘X-GM-TD-ITEMS’)
group by UserID,
 Folder
order by UserID,
 Folder

n Notes - GoldMine Premium 8.5.x

select OnDate as [Act Date],
 OnTime as [Act Time],
 Duration,
 Ref as [Reference],
 cast(cast(notes as varbinary(max))as varchar(max)) as Notes
from ContHist
where cast(cast(notes as varbinary(max))as varchar(max)) like ‘*** DJ%’

n Records Created within Last 30 days

select *
from Contact1
where (CreateOn > { fn NOW() } - 30)
order by CreateOn

n Select - 2nd Group of 250 Records

Select Top 250 *
from Contact1
where RecID not in
 (select Top 250 RecID
 from Contact1

Note
As of GoldMine Premium 8.5.x Notes
are now stored as Images. Any query
statement must account for this, and
one must use the cast() and max()
functions to query this information.

Gathering the Data
GoldMine Premium - The Definitive Guide

161

 order by Contact)
order by Contact

n Select - Convert Function - Specific Type History records on specific date

select Contact1.Company,
 Contact1.Contact
from Contact1 inner join ContHist
 on ContHist.AccountNo = Contact1.AccountNo
where ContHist.sRecType = ‘T’
 and (ContHist.OnDate = convert(datetime, ‘2009-09-11 00:00:00’, 102))
 and ContHist.ResultCode like ‘C%’

n Select - Date Function - Contact1 records created within the last 2 days

select *
from Contact1
where (CreateOn > { fn NOW() } - 2)

n Select - SQL Case Select - If Key1 empty use Key2, if both empty use Key1

select
case Key1
when ‘’
then Key2
else Key1
end
from Contact1

n Select - Substring Function

select substring(ContSupp.ContSupRef, charindex(‘@’, ContSupp.ContSupRef)+1, len(ContSupp.
ContSupRef)-charindex(‘@’, ContSupp.ContSupRef))
from Contact1
join ContSupp on Contact1.AccountNo = ContSupp.AccountNo
where ContSupp.Contact = ‘E-mail Address’
 and ContSupp.ContSupRef like ‘%DJ@DJHunt.US%’

n Select - Substring Function
Prerequisite: ContSupp.Address1 = [MM/DD/YY]

select ‘20’+substring(Address1, 7, 2)+substring(Address1,1,2)+substring(Address1,4,2) as Date
from ContSupp
where ‘20’+substring(Address1, 7, 2)+substring(Address1,1,2)+substring(Address1,4,2) >=
‘20090101’
 and ‘20’+substring(Address1, 7, 2)+substring(Address1,4,2)+substring(Address1,1,2) <=
‘20091231’

n Select - Sum/Case Functions - This one is particularly interesting for column display

select UserID,
 sum(case when [FOLDER] = ‘X-GM-INBOX’ then 1 else 0 end) ‘Inbox’,
 sum(case when [FOLDER] = ‘X-GM-OUTBOX’ then 1 else 0 end) ‘Outbox’,
 sum(case when [FOLDER] = ‘X-GM-TRASH’ then 1 else 0 end) ‘Trash’
from MailBox with (nolock)
group by UserID
order by UserID

n Top 3 Companies by Sales

select top 3
 C1.Company,
 C1.Contact,
 sum(cast(CH.Duration as Money)) as TotalSales,
 count(CH.Duration) as SalesCount,
 CH.AccountNo
from Contact1 C1
 join Conthist CH
 on C1.AccountNo=CH.AccountNo
where CH.RecType = ‘S’
 and CH.Duration like ‘%.%’
group by C1.Contact,
 C1.Company,
 CH.AccountNo
order by sum(cast(CH.Duration as Money)) desc

Gathering the Data
GoldMine Premium - The Definitive Guide

162

n Union Contact, Sales Pending & History

select Contact1.AccountNo,
 Contact1.Company,
 Contact1.Contact,
 Contact1.Key1,
 Contact1.Address1,
 Contact1.Address2,
 Contact1.City,
 Contact1.State,
 Contact1.Zip,
 Cal.OnDate,
 Cal.Ref,
 cast (Cal.Number1 as varchar) as Value,
 cast (Cal.Duration as varchar) as Prob_Result
from Contact1,
 Cal
where Contact1.AccountNo = Cal.AccountNo
 and Contact1.Key1 = ‘Client’
 and Cal.RecType = ‘T’
union select Contact1.AccountNo,
 Contact1.Company,
 Contact1.Contact,
 Contact1.Key2,
 Contact1.Address1,
 Contact1.Address2,
 Contact1.City,
 Contact1.State,
 Contact1.Zip,
 ContHist.OnDate,
 ContHist.Ref,
 ContHist.Duration,
 ContHist.ResultCode
from Contact1,
 ContHist
where Contact1.AccountNo=ContHist.AccountNo
 and Contact1.Key1 = ‘Client’
 and ContHist.sRecType = ‘T’
order by Contact1.Contact,
 OnDate

n Union Query - Information from Contact1 & ContSupp

select Company,
 Contact,
 AccountNo
from Contact1
where Company like ‘Computer%’
Union select Contact1.Company,
 ContSupp.Contact,
 ContSupp.AccountNo
from Contact1,
 ContSupp
where Contact1.AccountNo=ContSupp.Accountno
 and ContSupp.RecType=’C’
 and Contact1.Company like ‘Computer%’ order by Company

That should give you enough queries to show you the endless possibilities. This, then, brings us
to the conclusion of the SQL Query section of this chapter. However, you should understand by
now that the SQL Query is a very, very powerful reporting tool. I suggest that you bone up on your
SQL Query language, as it can only help you. I found a book from Sams’ publishing, called Teach
Yourself SQL in 24 hours by Ryan K. Stephend and Ronald R. Plew, to be extremely useful, and
enlightening.

It is important to understand that a SQL Query is only the returning of data which exists in your da-
tabase, and that it, in and of itself, cannot be activated or used as would a Filter or Group. Yet, the
results of your SQL Query could be utilized to create a Group.

Let’s say, as I recently had done, that you needed to know everyone in your GoldMine database that
was still using GoldMine Standard Edition, and that had not, as yet, upgraded to GoldMine Corporate
or Premium Edition. As I store this information as a Detail (ContSupp table), against my GoldMine
database this would be the resulting query to pull the AccountNos for those records:

select distinct Contact1.AccountNo
from Contact1,
 ContSupp
where Contact1.AccountNo=ContSupp.AccountNo
 and Contact1.MergeCodes like ‘%E%’

Note
It is critical that you have the same
number & type of fields in your select
statements on both sides of the Union
or you will receive an error when you
attempt your query.

Groups

Gathering the Data
GoldMine Premium - The Definitive Guide

163

 and Contact1.MergeCodes not like ‘%N%’
 and ContSupp.ContSupRef like ‘6.%’
 and Contact1.AccountNo not in
 (select ContSupp.AccountNo
 from ContSupp
 where (ContSupp.ContSupRef like ‘7.%’
 or ContSupp.ContSupRef like ‘8.%’))

That query pulled some 171
records from my GoldMine da-
tabase today, and, more impor-
tantly, that query can be saved
using the Save button, Figure
7-9, and reutilized again and
again.

The reader will remember that
a Group represents the data
in GoldMine at a specific point
in time. That point in time is
the date, and the time that the
group is generated. There are
two grids on this dialog form
under the Groups tab, Figure
7-10. The top grid, with the
Group Name, Code, and the
Members fields is where the
user adds their Groups . As I
mentioned earlier in this chap-
ter, Groups are stored in the
ContGrps table, and they are
associated with the UserIDs.
A right-click in this grid area
will bring up a local menu from
which the user may Select
User..., from the GoldMine list
of users, for which they may
wish to employ or examine that
UserIDs defined Groups. That,
however, is only there for lega-
cy as GoldMine Premium 8.5.x
now has a View Groups: of
UserID option from where one
could just click on the drop ar-
row to select any of the defined
UserIDs within GoldMine. More
simply put, any user may use
the groups of any other user if
they have the Access Rights
to do so.

It is also from this local menu
that the user may select to cre-
ate a New... group or by simply
clicking upon the New Group
button. Doing so will bring up
the New Group dialog form
shown here in Figure 7-11. The creator is asked to
supply a Group Name: in that field, however, the cre-
ator is not allocated much space to give the Group a
really descriptive name. The creator is limited to only
24 characters with which to define this Group.

The Code: field, not to be confused with the Activity
Code field when scheduling activities, is strictly a Sort
Order field. GoldMine does not alphabetize the Group
list by the Group Name: field, but instead, sorts the
Group list alphabetically based on the Code: field. Ad-
ditionally, as I stated earlier, not only may one view the
Groups of another user, but they may also construct
a Group in another users name. From the User: field

Figure 7-9

Figure 7-10

Figure 7-11

Note
Key phrasing here: a SQL Query defini-
tion can be saved for later use, where-
as, Groups must be rebuilt each and
every time. There is no saving of the
Groups definitions as there is for the
Filters or the SQL Query.

Tip
Keep in mind, as I am building a
Group from the resulting cursor, that
I only require the AccountNo. When
building Groups only the AccountNo
is required, and only one AccountNo
will be added to the Group regardless
of how many times it appears in the
query results.

After all, do you really want to eBlast
two of the same e-mails to the same
Contact? I think not.

Tip
When naming anything anywhere
in GoldMine, try to give a name that
will describe what the action does.
You want to make certain that, when
you read the description a year from
now, you, or anyone else, will be able
to understand clearly what the Group
consists of. As Groups are a static
representation of data at a specific
date/time, it would not be a bad idea
to identify that date as a string date
in your Group Name: description as
I have done in Figure 7-11.

If this task is to be successful, you
must go directly from the SQL Query
tab to the Groups tab immediately fol-
lowing the clicking of the Query button
as shown in Figures 7-9 & 7-10.

WARNING

Gathering the Data
GoldMine Premium - The Definitive Guide

164

drop-down list, select the name of the user for which the Group is being constructed. The default
item in the drop list is the currently logged in GoldMine UserID, however, many organizations will
simply build Groups under the (public) user.

The þ Build the Group checkbox is select in the default state. If this checkbox is selected, and the
user were to click on the OK button, GoldMine would bring up the Group Building Wizard dialog
form immediately, from which the user may construct the desired Group.

Groups are not normally syn-
chronized to remote users via
GoldMine in the default state.
Should it be your wish, that
your remote users have avail-
able the Groups which are
created Server-side, then the
creator of the group must se-
lect o Synchronize Group.
By default, this option is not
selected, and one must be
cognizant of this fact if they
wish to have Groups synchro-
nize to their Remote-side us-
ers.

Once the user has completed
this dialog form, they must
click on the OK button. I’ll as-
sume that you maintained the
default setting, and will go di-
rectly into the Group Building
Wizard as shown in Figure
7-12. Yes, I know, I have al-
ready preselected the � SQL
Query records for this exer-
cise, however, we all know
that in this dialog forms default
state, none of these options
would have been selected.
We are, after all, attempting
to build a Group based on our
previous SQL Query cursor,
and these are the steps to ac-
complish that task.

Clicking on the Next > button
will bring up the dialog form

shown in Figure 7-13. I will dis-
cuss this dialog form in more
detail coming up when I discuss
something other that creating a
Group as a result of your SQL
Query cursor. Clicking on the
Next > button will bring up the
Finish dialog form, not shown.

Now, clicking on the Finish
button would start the process,
and GoldMine would build the
Group from the SQL Query cur-
sor. The Filters and Groups
dialog form, at least against my
GoldMine database, would look
like this one shown here in Fig-
ure 7-14. It’s just that simple, so
even though you cannot save
your Group building profile, you
can save you SQL Queries, and
rebuild your Group at any time
in the future to capture the latest
static information. Once built,

Figure 7-12

Figure 7-13

Figure 7-14

Gathering the Data
GoldMine Premium - The Definitive Guide

165

you could activate said Group, and utilize it for Reporting, eBlasting, Merge Documents, etc.

I would like to step back a bit now, and show you, what I probably should have shown you first, how
to build your Groups by hand.

For this exercise, we will be building a Group that will match another of my, previously defined, select
statements. I want all of the Contact records that have a Primary E-mail Address. To do this I
must build the group based upon � Supplemental contact data, refer back to Figure 7-10 on the
previous page. Before I do this, I would like to emphasize the various options by which one can build
a group of contact records.

Groups could be built based on:

	 � Filtered records
	 � Previewed records
	 � SQL Query records
	 � Tagged records
	 � Search result
	
	 � Scheduled calendar activities
	 � Completed history activities
	 � Supplemental contact data

Once the user clicks on the
Next > button, they will be
stepped into the dialog form
shown here in Figure 7-15.

� Details will be selected
by default, however, as men-
tioned in The Tables chapter,
there are other record types
maintained in the ContSupp
table. The user, at this point,
could as easily have chosen
� Document Links, � Ad-
ditional Contacts, or � Re-
ferrals, all of which represent
supplemental contact data. I,
however, want the default set-
ting for this exercise.

The Detail: field F2 Lookup list is comprised of all of your defined Details. One could type into this
field anything that they desire, however, unless it was an item from the F2 Lookup list, there would be
little likelihood of finding any records that match the criterion specified. Hence, GoldMine will Force a
match against the F2 Lookup List. For this exercise I chose E-mail Address from the F2 Lookup list.

For this exercise, there is nothing that I wish to enter into the Keyword: field. I, therefore, leave
it blank, and simply click on
the Next > button to bring us
to the dialog form shown here
in Figure 7-16. However, you
should be aware that the Key-
word: field search is a contains
($) statement so that you
could have culled your results
a little by including something
like:

@DJHunt.US

The reader will notice that I
have selected from the drop-
down list of the Sort field:
field, the Contact field on
which to sort. The creator of
the Group may select from
any field contained within the Contact1/Contact2 tables (refer to sidebar Note).

The next field that one encounters is the Reference: field. If you will refer back to Figure 7-10, and
look at the second grid, to the bottom of the figure, you will see columns for Member, Sort, and

Figure 7-15

Note
No matter which field the creator of
the Group selects to sort upon, only
the first 8 characters of the selected
field will be employed when creating
the sorted group list.

Figure 7-16

Gathering the Data
GoldMine Premium - The Definitive Guide

166

Record Tagging

Figure 7-17

Reference. Whatever expression the user enters here in the Reference: field, will be displayed in
the Reference column of that grid. By default, GoldMine enters {ContSupp->ContSupRef}, which
is the field that contains most of the actual e-mail address, therefore, I will accept the default in this
case.

The last field on this page of the wizard, is the Filter Expr: field, and it is here that I must qualify
those records that I wish in my list. Back in my SQL Query select statement, for this same Group,
you’ll remember that I discussed that the Primary E-mail Address is identified by having a 1 as the
second byte of the Zip field in the ContSupp table (refer to The Tables chapter). As I am interested
in only those Contact records that have a Primary E-mail Address, I must have a filter expression
that will establish this same criterion. I have entered:

substr(ContSupp->Zip, 2, 1) = [1]

Once entered, I would click on the Next > button, and then on the Finish button. This produces the
group result of 336 records when built against my GoldMine database.

Has anyone noticed a drawback in our discussion of the Groups tab, or the creation of a group?
Not anywhere, in the wizard, did it ever ask me to save the profile. I’ve mentioned this earlier in
this chapter. Each time I need to Add Members, or need to Build a Group, it must be done from
scratch, stepping through the wizard each time. I must remember the fields that were previously
selected, and the expressions that were used each time that I want to rebuild the Group to refresh
it. In this exercise, it would have been wiser to have performed my SQL Query first, which could be
a saved profile, and then to have built the Group based upon the resulting query cursor. It is much
easier, and significantly faster. Hence, the reason that I covered SQL Queries before Groups in
this chapter.

Groups may also be built based on � Tagged records, therefore, I thought that I would take a mo-
ment to explain how one goes about Tagging a record. As shown here, Figure 7-17, you should
bring up the Contact Search Center dialog form. Holding the Ctrl key down or simply check the
box preceeding the record to select (tag) a record. Notice that, in the Contact dialog form behind,
the title has changed to include, 1 tagged records when you select the first Contact record. You
may tag as many records as you wish by finding the name in the Contact Search Center, holding
the Ctrl key down, and selecting (left-clicking) the record with your mouse or by simply checking
the box preceeding the record. You will notice that my titlebar shows that I have 3 tagged records,
and, as they are all on the same Contact Search Center screen, you can see the check marks next
to those that I have tagged. You must leave the Contact Listing window open until after you have
built your Group based upon � Tagged records.

Gathering the Data
GoldMine Premium - The Definitive Guide

167

Relationship
Tree

You may also use these tagged records just as they are without building a Group. That’s right, once
Tagged, you may use this as your Active Filter for reports, merge documents, and e-mail merges or
just anything that utilizes a Filter/Group. This will be your Active Filter until you close your Contact
Search Center.

We’ve talked about the Relationship Tree elsewhere in
this book on a number of occasions, but did you realize
that a well structured Relationship Tree can also be used
as an Active Filter? That’s right. Take a look at this Front-
Range tree in Figure 7-18. Notice that I am only showing
you two of my many FrontRange Sub Folders, however,
this should be enough to illustrate my point.

For argument sake, let’s just say that I wanted to eBlast
to everyone at FrontRange. I would simply highlight the
Book level folder (FrontRange), And then right-click on
that highlighted branch to bring up the local menu. From
that local menu, I would then select Activate Relationship
Tree or you could simply click on the Activate button on
the toolbar running across the top of the relationship tree
list.

Notice the titlebar in Figure 7-18 which currently reflects
the Active Contact record belonging to Kevin Smith. After
one has activated a tree, or branch of a tree, the titlebar
would now indicate, per my example: Section: Front-
Range; Steve Salas. Now go ahead and release that
Active Filter by again selecting the local menu, but this
time selecting Release from the local menu or the toolbar
across the top of the relationship tree list.

Let’s look at another data gathering feature of the Relation-
ship Tree while we are here. Prior to the Relationship Tree
(Organization Tree), people would enter all of the contacts
belonging with a single organization under the Additional
Contacts (Others) tab. This way all of the history for one
organization, regardless of who it was with, would appear
under the one History tab on that record. With the intro-
duction of the Relationship Tree, then called Organization
Tree, FrontRange asked us to begin the move to an Ac-
countcentric solution by creating a single contact record for each organization member, and then
relating them via the Relationship Tree.

Good enough, but then people wanted to know: What about the corporate history? It would now all
be individual history. No problem on the SQL backend. Simply highlight, let’s say, the Corporate
branch of my tree. This will take you to the linked record for that branch. Now click on the Rollup
button in the toolbar or Roll up ALL Section’s Contacts from the local menu, your choice. Gold-
Mine will now rollup all of the history for all contact records in the branch under the History tab of the
Active Contact record. Sweet!

Figure 7-18

Gathering the Data
GoldMine Premium - The Definitive Guide

168

