
6

Th
e

Lo
ok

up
.in

i

The Basics

Updating Fields

Emulating Radio But-
tons

Rotationally Assigning
Leads to Representa-
tives

Last Name Conversion

Running External Ap-
plications

Playing Macros

Color Coding Calendar
Activities

Generating Your Own
Unique Identifier

Record Typing (Another
Approach)

Currency Formatting

Lookup.ini Razzle-
Dazzle

GMTray

In This Chapter

The Basics

This is going to be an easy chapter to rewrite as nothing has changed
between versions and builds of GoldMine Premium with regard to this
area. The Lookup.ini is how FrontRange Solutions allows the Gold-

Mine Administrators to add external functionality to their GoldMine product.
The Lookup.ini is an extremely powerful programming tool that is, unfortu-
nately, not used to its fullest advantage, if at all, in most GoldMine imple-
mentations. I can not stress enough, how much control you can gain over
your GoldMine with the proper programming of this utility, and, if you have
not already guessed, this is my favorite chapter in the entire book. I just love
writing this chapter. I hope that you enjoy reading it just as much.

One could write a program that would automatically assign a unique account
number to each and every record as it is being created. GoldMine does not
have a radio button option, however, you could program (emulate) one into
GoldMine via the Lookup.ini. How about the capability to automatically as-
sign new leads to account managers in a rotational manner? This is easily
accomplished through the use of the Lookup.ini functionality within GoldMine
Premium. Would you like to run an external application, or play a macro
when a field changes, when a new contact history record is added, or when
a calendar record is edited? You can do all of this as well with the proper
programming of your Lookup.ini. How would you like a consistent color cod-
ing schema throughout the corporation for calendar activities? Yes, this too
is even possible through the Lookup.ini. If you can imagine it, and if it is not
already in the GoldMine application, you could probably program it in through
the Lookup.ini.

Here is one that I am including in this version of The Hacker’s Guide. How
would you like to give your users the option of entering Mr. & Mrs. DJ and
Carol Hunt Jr. into the Contact field, and having the Dear field populated with
Dr. & Mrs., the Contact field populated with DJ Hunt Jr., the LastName field
populated with Hunt, and finally the Spousal field populated with Carol Hunt?

When thinking of the Lookup.ini, think Power.

First of all, it should be understood that there is no Lookup.ini distributed with
the GoldMine product. The Lookup.ini is an application that one must cre-
ate from the get go. I recommend that you create the Lookup.ini using the
Windows NotePad application (Start | Run | NotePad). Once created in
NotePad, it must be saved as Lookup.ini (see sidebar Tip on the next page)
in the root folder of your GoldMine.

The Lookup.ini is broken down into sections. Some of the sections are self
contained while other sections are dependant upon the instructions in the
[AutoUpdate] section of the Lookup.ini. Each section is defined by the
header which is defined with enclosed square brackets. Let’s start with the
[AutoUpdate] section which would have a header:

[AutoUpdate]

I should explain that throughout this chapter I will use white space, and com-
ments freely to assist in the readability of the Lookup.ini application. If you
have an exceptionally large Lookup.ini, you will have to consider the rules
that must be adhered to (see sidebar Rules) regarding size limitations, and
you may have to forego readability formatting for size considerations.

So, what is contained in the [AutoUpdate] section? The [AutoUpdate] sec-
tion defines the fields that GoldMine is to watch for changes, and contains a
pointer to the section(s) that are to be processed should one of those fields
being watched change. There is a single exception to the watch side of
the equation, and that is GoldMine allows the [AutoUpdate] section to also
watch for the creation of a new contact record as opposed to a field, and
when a record is created the right side of the equation defines the section(s)
that are to be processed accordingly.

Note
In GoldMine Premium, there is no ca-
pability of having a single Lookup.ini
per Contact set as you had available
with the GoldMine Standard Edition.

Rules
A. The Lookup.ini may not exceed
64K in size (theoretically).

B. No single line in the Lookup.ini
may exceed 250 characters.

Personally, I have broken the 64K bar-
rier for clients in the XP Pro environ-
ment, and the clients claim that the
Lookup.ini does function as expected.
Your mileage may vary.

The Lookup.ini
GoldMine Premium - The Definitive Guide

128

			 NewRecord = Key5
			 uMyField1 = uMyField2, uMyField3

If you are planning on formatting a field in a certain way, you can ask GoldMine to watch the field,
and then go to the same named section to process the instruction set contained there in. An example
of that would be:

Key4 = Key4

You may wish to add comments to your Lookup.ini. Programmers do this a lot for readability, and for
future understanding of what the section was expected to do. If you wish to add a comment to your
Lookup.ini, you precede the line with a semicolon (;).

Here is an example of what this much of a Lookup.ini might look like:

[AutoUpdate]

 ;Watch for a new record being created and process the instruction
 ;set in the Key5 section.

 NewRecord = Key5

 ;Watch for Key4 being changed, and process the instruction sets for
 ;Key4, Key5, and uMyField1 in that order.

 Key4 = Key4, Key5, uMyField1

Under the instruction set sections, you must define the action which is to be performed. If the
instruction set pertains to a field, then the header must be the name of the field. In our example
above, there must be an instruction set for the Key4, Key5,and uMyField1 fields or nothing will be
processed for the missing instruction sets.

The instruction set itself has sections. In the first section are the lookups. Each lookup is numbered
sequentially. In example: Lookup1, Lookup2, Lookup3, ... When processing begins, each lookup
will be considered in its sequential order, and all lookups will be considered until one of those lookup
variables produces a positive result, or all have been processed with negative results. Consider
each of these lookups to be the names of variables. The variable name is on the left side of the
equation while the function is on the right hand side of the equation.

Under each lookup is a value list to compare against. If the value in the Lookup(x) variable matches
one of the values in the comparison list, the function to the right of the equal sign in the equation is
processed. If no match is found, the next lookup variable is evaluated and so on in turn.

Should all of the lookups fail to produce a match, then there can be a fail safe statement. This is
called the Otherwise statement. If Lookup1 produces a match, process the appropriate expression.
If Lookup2 produces a match, then process the appropriate expression. Otherwise, if all Lookup(x)s
have returned False, process this expression. You may use the Otherwise statement as a self stand-
ing statement without having any Lookup statements.

The last section is the Overwrite statement. This statement is a switch which instructs GoldMine, if
there is already information contained in this field, to overwrite the field information with this new in-
formation or not depending on the setting of the switch. A zero (0) tells GoldMine that it is not okay
to overwrite the information contained in the field, while a one (1) tells GoldMine that it is permitted
to overwrite the field with the new information.

In this section, I will put the previously disclosed information into practical use. I will demonstrate a
Lookup.ini to update the Key5 field with a unique account number each time a new record is created.
I will populate the Key1 field with the Account Managers name, and I will populate a user defined
field, uUserName, with the GoldMine login name for that Account Manager.

Prior to beginning with the Lookup.ini, we need to make some corporate decisions. The Key5 field
must have its Read Access attribute set to (public) while its Update Access attribute is set to MAS-
TER or the GoldMine Administrators UserID. I would further stipulate that the user who is creating
the new record will be the Account Manager. Lastly, there must be a user defined field created that
is called uUserID, be a character based field, and be 8 characters long.

Watch for left side
to change

On change go to
right side instruction
sections

Rules
C. The Lookup.ini must reside in
the same directory as the GoldMine
Premium executable GMW.exe.

D. You may only have one [AutoUp-
date] section in your Lookup.ini.

Tip
If you are using NotePad to create/edit
your Lookup.ini, make certain, when
you save the file, that the .txt exten-
sion is not put on the file automatically
by NotePad. The file name must be
Lookup.ini. If your resulting file is
named Lookup.ini.txt, you must re-
name the file back to Lookup.ini.

Note
The Lookup.ini functions equally well
for the Microsoft SQL or the Firebird
SQL versions of GoldMine, although I
must warn you that I have heard ru-
mors of FrontRange dropping support
for Firebird.

Note
Numeric based fields always contain a
value. If you are updating a numeric
based field through the Lookup.ini,
then you must include Overwrite = 1
in the action section.

Updating Fields

The Lookup.ini
GoldMine Premium - The Definitive Guide

129

When creating the unique account number for each record, one must consider the possibility that
synchronization may be occurring. If the field were populated with just a number, then there is the
chance for duplication if records are created Server-side and Remote-side as the Counter variable
is stored in the Lookup table which synchronizes between the two locations. As I am looking for
uniqueness, I must append something to the number, such as the UserID, which itself is unique, that
will cause the account number to maintain its uniqueness (most of the time at least).

[AutoUpdate]
 NewRecord = Key1, Key5, uUserID

[Key1]
 Lookup1 = &UserName

 DJ = DJ Hunt
 BOB = Bob Jefferson
 BUBBA = Bubba Gump
 Otherwise = Up for grabs

 Overwrite = 1

[Key5]
 Otherwise = &trim(Contact2->uUserID)+padl(ltrim(str(counter([AcctNo],1))),10,[0])

 Overwrite = 1

[uUserID]
 Otherwise = &UserName

 Overwrite = 1

Let’s take a look at the Lookup.ini section by section. The first section is:

[AutoUpdate]
 NewRecord = Key1, uUserID, Key5

In this section, the [AutoUpdate] section, I am saying that whenever there is a NewRecord created
that GoldMine should process the instruction sets under the sections Key1, Key5, and uUserID.
Just as important, the instruction sets must be processed in that specified order. This is done in case
the processing in one instruction set is dependant upon the results of the processing in a previous
instruction set, better known as cascading instruction sets.

The first instruction set to be processed after the creation of a new record is the Key1 instruction set.

[Key1]
 Lookup1 = &UserName

 DJ = DJ Hunt
 BOB = Bob Jefferson
 BUBBA = Bubba Gump
 Otherwise = Up for grabs

 Overwrite = 1

I am using one lookup variable in this instruction set, and I am setting that Lookup1 variable equal
to the resulting value of the GoldMine macro &UserName. Here I have used one of the many Gold-
Mine developed macros. Please refer to Appendix B at the back of this book for other available and
valuable GoldMine macros. This particular macro will return the logged in users GoldMine UserID.

In the next three lines of this instruction set, I am comparing the left side of the equation to the infor-
mation stored in the Lookup1 variable. Therefore, if the information in Lookup1 matches either DJ,
BOB or BUBBA, then the value on the right hand side of the appropriate equation should be pushed
into the Key1 field.

Should neither DJ, BOB or BUBBA match the value in the Lookup1 variable, I have included an
Otherwise statement. My Otherwise statement evaluates if there are no matches found against the
value contained in the Lookup1 variable, and will push Up for grabs into the Key1 field.

Do I require an Overwrite = 1 statement? Where as, in the past I would have said No, in GoldMine
Premium I must answer this question with a definitive Yes. In the past, all but a few of the fields would
have been .null. (empty) when a New Record was created within GoldMine. In GoldMine Premium,
one now has the ability to input information into any field that exists for the record, hence, for Gold-
Mine Premium and into the GoldMine future, you must utilize the Overwrite statement to account for
the possibility that your user may have entered a value into the field.

As you know from a previous chapter, GoldMine only allows the user to add user defined fields in
three data types, Character, Numeric or Date. Here’s a bit of code that will let you emulate radio
buttons within your GoldMine Premium environment using character based fields.

Emulating Ra-
dio Buttons

The Lookup.ini
GoldMine Premium - The Definitive Guide

130

The follow prerequisites are required. You are required to add three new GoldMine fields each being
character type, and 1 character in size. They must be named uRB1, uRB2, and uRB3 respectively.
You should place these on a screen and adjust the Field Label Size to 0 while the Data Size need
only be 2 characters wide. For clarity, you should add an expression field to the right of each field so
that it will be easily understood as to which radio button has been selected. You should set up the
lookups for these fields to not Allow blank input, and to Pop-up when selected. Additionally, I include
one lookup entry, ~chr(169), in each F2 Lookup list. A sample of our GoldMine representation is
shown here in Figure 6-1.

[AutoUpdate]
 uRB1 = uRB2, uRB3
 uRB2 = uRB1, uRB3
 uRB3 = uRB1, uRB2

[uRB1]
 Otherwise = &space(0)

 Overwrite = 1

[uRB2]
 Otherwise = &space(0)

 Overwrite = 1

[uRB3]
 Otherwise = &space(0)

 Overwrite = 1

Having set those prerequisites, let’s look at the individual sections. The last three sections are simi-
lar with only variations in field names, therefore, I will only examine the first.

[AutoUpdate]
 uRB1 = uRB2, uRB3
 uRB2 = uRB1, uRB3
 uRB3 = uRB1, uRB2

The [AutoUpdate] section is very straight forward. The first line is instructing GoldMine to watch
the uRB1 for any change, and if it changes, to follow the instruction sets under the uRB2 and uRB3
sections in that specific order. The other two lines are just variants of the first so I won’t described
those in detail.

Now let’s examine the instruction set under uRB2.

[uRB2]
 Otherwise = &space(0)

 Overwrite = 1

I do not require a Lookup1 variable field. Not having a Lookup1 statement causes the processing
to drop immediately to the Otherwise statement which states: replace the uRB2 field with nothing
(not to be confused with a .null. value). I am forcing the value of nothing employing the space()
function, and I am saying that there should be 0 spaces inserted into this field.

Finally, just in case there was previously a value in the uRB2 field, I must include the Overwrite
statement. You’ll remember that one (1) in this statement lets GoldMine know that it is acceptable
to overwrite the old value with the new value which, in this case, is space(0).

Wow! Big section title, huh? Here is the scenario for this Lookup.ini function. This particular office
has twelve sales representatives. As new leads are entered into GoldMine, the leads should be
distributed to each representative in turn. I have heard this type of distribution of leads to be called
a “Round Robin”. This is very simple to accomplish using the power of the Lookup.ini, but of course
everything is simple once you know how to do it.

The prerequisite for this is to have created a user defined field, uNextRep, N, 2, 0. You do not have
to display this field on any screen as we will only be using this field to store the next representatives
number. With the field created, we can now discuss the operation of this Lookup.ini.

[AUTOUPDATE]
	 NewRecord = uNextRep, Key1

[UNEXTREP]
	 Lookup1 = iif(counter([NextRep], 0) = 12, [A], [Z])

	 A = &counter([NextRep], 1, 1, 1)
	 Z = &counter([NextRep],1)

	 Overwrite = 1

Figure 6-1

Rotation-
ally Assigning
Leads to Rep-
resentatives

Tip
Should you ever need to blank out a
date based field through the use of
the Lookup.ini, I have found that this
works nicely.

&.null.

The Lookup.ini
GoldMine Premium - The Definitive Guide

131

[KEY1]
 Lookup1 = uNextRep

 1 = DJ Hunt
 2 = Davey Crockett
 3 = Daniel Boone
 4 = Jimney Cricket
 5 = Donald Duck
 6 = Daisy Duck
 7 = Mickey Mouse
 8 = Minnie Mouse
 9 = Goofey
 10 = Pluto
 11 = Pinnochio
 12 = Gippetto

 Overwrite = 1

As you can see in the [AutoUpdate] section, above, I am only processing these instruction sets
upon the creation of a new record at this time. The first instruction set that I process is the uNextRep
instruction set (sequencing order is critical here). In that instruction set, I set one lookup variable
using the immediate if function. This functions syntax is:

iif(<Expression>, <True>, <False>)

When using the iif() function, you must have an expression that can be evaluated to a logical True
or False. If the expression evaluates to a True, then the value from the True position is stored in our
Lookup1 variable. Alternatively, if the expression evaluates to a False, then the value from the False
position is stored in our Lookup1 variable. Our expression is:

Lookup1 = iif(counter([NextRep],0) = 12, [A], [Z])

At the time of processing for this instruction set, I am looking to see if the value in the
counter([NextRep],0) is equal to 12, the maximum number of representatives for our rotation. If it
is equal to 12, then it is True, and I am stuffing our Lookup1 variable with an A. If the value in the
counter([NextRep],0) is not equal to 12 then I stuff our Lookup1 variable with a Z. As the expres-
sion for Lookup1, counter([NextRep],0) adds 0 to the NextRep variable to return the existing value
contained in the NextRep variable, hence, I don’t have to worry about incrementing the NextRep
variable number in the Lookup table when I am just testing for what the actual value is presently.

Next, and first in our comparison list, is the comparison statement if the Lookup1 variable contains
an A.

 A = &counter([NextRep], 1, 1, 1)

If the Lookup1 variable contains A, then I employ the counter function to reset our counter value,
NextRep, to its starting position of 1. My second comparison employs the counter function again,
however, this time the counter function is set to increment my counter value, NextRep, by 1. In ex-
ample, if my counter value were 2, it would then be incriminated to 3, and that value would be stuffed
into the uNextRep field.

Z = &counter([NextRep],1)

Notice the difference between the two counter functions. The syntax for the counter function is:

counter(<String Variable>, <Increment>, <Start>, <Action>)

The Start and Action parameters are optional, and as was shown in the Z statement previously.
When the Action parameter is set to 1, then the counter is reset to the number in the Start parameter.
When the Action is set to 2, the counter will be deleted from the Lookup table where the variable, and
value of the counter are stored.

Once I have set the uNextRep field to a value, I have completed this instruction set. Although I
haven’t mentioned the last statement in this instruction set, you should remember, from previous
examples, its meaning.

According to the [AutoUpdate] set, the next instruction set to be processed is the Key1 instruction
set. The Key1 instruction set is very simple. I stuff the value stored in uNextRep into our Lookup1
variable, and then use that as a comparison value to our list. In example, if the number in uNextRep
were 4, then Jimney Cricket would be stuffed into the Key1 field.

As defined, this Lookup.ini will now assign a new contact record to each representative, in turn, until
the value in uNextRep reaches 12. It will then reset that number to 1, and begin the entire distribu-
tion cycle again, hence the term, Round Robin.

Note
It may be of interest to you to know
that all counter() variables are stored
in the Lookup table. The variable
name is stored in the first 9 positions
of Lookup.FieldName with a C in the
10th position. The actual counter val-
ue is stored in the Lookup.Entry field.

Note
For a more detailed explanation of the
Counter() function, refer to Appendix
A.

The Lookup.ini
GoldMine Premium - The Definitive Guide

132

I am constantly amazed at all of the control that the end user really has at their disposal for the
GoldMine product, and how little of it is employed. If you can dream it, you can probably accomplish
it through the use of the Lookup.ini.

Let’s look at another example now that we’re on a roll. This is an example that I wrote many years
ago, and FrontRange liked it so much they added to their FAQ’s system, albeit inaccurately. The
main screen in GoldMine contains a Contact1.Contact field, and a Contact1.LastName field. For
years GoldMine has incorporated the functionality to strip the last name from the Contact1.Contact
field, and place it into the Contact1.LastName field. For all of those years, it has functioned properly
in only about 95% of the cases. The functionality, as it exists in GoldMine, is to trim all of the trailing
spaces off of the Contact1.Contact field. GoldMine then takes everything from the first space in the
Contact1.Contact field, when reading from right-to-left, to the end of the Contact1.Contact field.
GoldMine would then put the resulting value into the Contact1.LastName field. For a contact name
like DJ Hunt, the value of Hunt would be inserted into the Contact1.LastName field. However, if that
person happened to be named DJ Hunt Jr., then Jr. would be placed into the Contact1.LastName
field. Not exactly what one would want, is it? This problem occurs on Jr, Sr, II, III, Esq, Rev, and
many other variations of the adjective.

As the correct functionality is not within the GoldMine product itself, I must bring the Lookup.ini into
play to rectify the situation. Below is my example of a Lookup.ini that will rectify this issue.

[AUTOUPDATE]
 NewRecord = LastName
 Contact = LastName

[LASTNAME]
 Lookup1 = iif([,] $ Contact, [A], [Z])
 Lookup2 = iif((upper(trim(LastName)) == [JR] .or. upper(trim(LastName)) == [JR.]), [B], [Z])
 Lookup3 = iif((upper(trim(LastName)) == [SR] .or. upper(trim(LastName)) == [SR.]), [B], [Z])
 Lookup4 = iif((upper(trim(LastName)) == [II] .or. upper(trim(LastName)) == [III]), [B], [Z])
 Lookup5 = iif((upper(trim(LastName)) == [ESQ] .or. upper(trim(LastName)) == [ESQ.]), [B], [Z])

 A = &alltrim(substr(Contact1->Contact, rat([], substr(Contact1->Contact, 1, rat([,], trim(Contact1-
>Contact))-1))+1, rat([,], trim(Contact1->Contact)) - rat([], substr(Contact1->Contact, 1, rat([,],
trim(Contact1->Contact))))-1))

 B = &alltrim(substr(Contact1->Contact, rat([], substr(Contact1->Contact, 1, rat([], trim(Contact1-
>Contact))-1))+1, rat([], trim(Contact1->Contact)) - rat([], substr(Contact1->Contact, 1, rat([],
trim(Contact1->Contact))-1))))

 Otherwise = &LastName

 Overwrite = 1

While this may appear quite complicated, if we examine it in sections, you will see that it is really very
straight forward, and easily understood. The first thing that I am accomplishing is to tell GoldMine
when to apply the instruction set for the LastName field, and that is, quite simply, whenever a New-
Record is created or whenever the Contact field is changed.

Now I get into the meat of this Lookup.ini, the instruction set for the LastName field. You will notice
that I have used 5 Lookup variables, the last 4 of which are compound iif() functions. Let’s examine
Lookup1 first as it will be the first one evaluated.

Lookup1 = iif([,] $ Contact, [A], [Z])

Here I am looking for an occurrence of a comma (,) within the Contact field, and if one is so con-
tained, then to stuff an A into the Lookup1 variable. Otherwise place a Z into the Lookup1 variable.
If Lookup1 contains A, then GoldMine will compare that to our list and process the instruction set
associated with that value. I will discuss this instruction set later in this section. On the other hand,
if the Lookup1 variable contains a Z, then GoldMine will not be able to find a comparison match, and
upon reaching the end of the instruction set, will loop back to the beginning. At this point GoldMine
would begin evaluating the Lookup2 variable. With minor variations, Lookup2 through Lookup5
are identical, and, consequently, I will only need to look closely at the Lookup2 variable. You are
expected to extrapolate the information that you will require to complete Lookup3 through Lookup5
from this explanation.

Lookup2 = iif((upper(trim(LastName)) == [JR] .or. upper(trim(LastName)) == [JR.]), [B], [Z])

Remembering the syntax of the iif(<Expression>, <True>, <False>) function, the expression that I
am evaluating, and that must return a logical True or False, is a compound expression. Here is the
expression:

(upper(trim(LastName)) == [JR] .or. upper(trim(LastName))==[JR.])

You will notice that there are, in fact, two expressions, and if either of them returns a True, then the
entire compound expression is considered to be True because it is an .or. condition. Whereas, if both

Last Name
Conversion

Note
Everything in statement A and B com-
parison is a continuous line of instruc-
tion and is only wrapped here for pre-
sentation purposes.

Note
It is important that you understand
that the Lookup1 variable is evalu-
ated first, and only if unsuccessful will
Lookup2 be evaluated, and so on in
succession until all of the lookup vari-
ables have been evaluated. If all have
failed, and if an Otherwise clause
has been incorporated, then, and only
then, will the Otherwise clause be
evaluated.

The Lookup.ini
GoldMine Premium - The Definitive Guide

133

expressions return a False, then the entire compound expression is considered to be False. Now
let’s examine the first of the two expressions.

upper(trim(LastName)) == [JR]

Working outward from the inner most parenthesis, I begin by trimming the spaces from the GoldMine
LastName field using the trim() function. Knowing that everyone will type in a different variation of
the value in the LastName field, I then force the remaining characters to upper case employing the
upper() function to accomplish this. One might ask here, why am I examining the contents of the
LastName field? To answer that, I need to look at the sequence of events that are fired by GoldMine.
Let’s say that you change the name in the Contact field. GoldMine will first write this information
into the Contact field of the record. GoldMine will then proceed to evaluate its own formula for strip-
ping out the last name. This, then, writes the GoldMine interpreted value into the LastName field of
the record. Lastly, your Lookup.ini will now be evaluated, therefore, instead of trying to find the last
name in the Contact field as GoldMine would, I can simply look to the LastName field for this value.

Next is my operator. Many of you will think that this is a typo, however, it is not. I have used the
double equal sign (==) purposely. In dBase syntax, the double equal sign operator has special
significance. The double equal sign means exactly equal to. Well, what is the difference between
exact equal to, and equal to? That’s a very tough explanation. The former compares the left and
right side of the operator at the byte level, therefore, everything on both sides must be equal. That in-
cludes the length, and any spaces. This may have been overly cautious on my part as I had already
trimmed off all of the spaces, yet I would rather err on the side of caution. The latter compares the
left and right sides at the character level. Test with three trailing spaces would return a True when
compared to Test with five trailing spaces.

Lastly is the right hand side of my expression, and this contains the value that I will be comparing
against, JR in this case. The other half of the compound expression has the right side of the expres-
sion JR. comparing against the left side of the expression. I have tried to capture all of the possible
variants that an end user might enter junior into the Contact field. To give you some possibilities for
your understanding of this scenario, one might expect to see junior expressed as jr, jr., Jr, Jr., JR,
JR., jR, and jR. to name but a few variants. All that I am attempting to do in my expression is to level
the playing field, so to speak, such that the expression can be evaluated fairly, and with some expec-
tation of finding matches. You must remember that the left side of the equation is evaluating to upper
case, hence, the right side of the equation must show comparison values in upper case as well.

Should my expression contain either JR or Jr. then stuff a B into the Lookup2 variable. Otherwise
place a Z into the Lookup2 variable. If Lookup2, Lookup3, Lookup4 or Lookup5 contain B then
GoldMine will compare that to our list, and process the instruction set associated with the B value.
I will discuss this instruction set in detail later in this section. On the other hand, if the Lookup2,
Lookup3, or Lookup4 variable contain a Z, then GoldMine will not find a comparison match, and
upon reaching the end of the instruction set, will loop back to the beginning until it has processed
through our list comparing the final variable, Lookup5.

It is about time for us to examine my list of comparison values. Naturally the first is A, and that in-
struction set looks like this:

A = &alltrim(substr(Contact1->Contact, rat([], substr(Contact1->Contact, 1, rat([,], trim(Contact1-
>Contact))-1))+1, rat([,], trim(Contact1->Contact)) - rat([], substr(Contact1->Contact, 1, rat([,],
trim(Contact1->Contact))))-1))

The left hand side of the equation, again, is our comparison value, and, if the Lookup1 variable
should match this value, then the expression on the right hand side of our equation would be pro-
cessed. To try and go through each section of this expression could get rather confusing so I will
use pseudo code to try to explain what the function is accomplishing. Mostly, I am using a com-
bination of the substr(<Field> , <Start Position>, <Number of Characters>) function, and the
rat(<Character to Look For>,<String to Look In>) function (refer to Appendix A). I am using these
to locate the numerical position of the comma in the Contact field, and then to strip off from that
position to the end of the string. Here is an example of what might be contained in the Contact field.

Donald J. Hunt, Pastor

In the example above you can count, and see that the comma occurs at position 15. Don’t forget to
count those spaces and that decimal point. Since the comma occurs at position 15, I would want to
strip off beginning from position 15 on up (I don’t want that comma and the space at position 15 and
16 respectively) to the end of the character string. In this example, that would be 8 characters. My
substring function would then look like this after all of the internally parentheses had been processed:

substr(Contact1->Contact, 15, 8)

Note
Remember that this instruction is on
one continuous line, and wrapped
here for presentation only. This line
is under the 250 character per line
limitation.

Note
I’ll be the first to admit that, after all
these years, I have devised easier
functions to handle this, however, as
this is the one that FrontRange has
posted on their site, I thought that I
should post the corrected Lookup.ini
here.

The Lookup.ini
GoldMine Premium - The Definitive Guide

134

In the B comparison I am doing virtually the same thing only it is a bit more complicated because I do
not have a unique character to search for in our character string. I must, therefore, find the numerical
position of the first occurrence of a space reading from the right hand side of our character string, and
moving to the left until that position is located.

B = &alltrim(substr(Contact1->Contact, rat([], substr(Contact1->Contact, 1, rat([], trim(Contact1-
>Contact))-1))+1, rat([], trim(Contact1->Contact)) - rat([], substr(Contact1->Contact, 1, rat([],
trim(Contact1->Contact))-1))))

Again I am using mainly a combination of the substr() function and the rat() functions to achieve this
goal. Looking at another example of the Contact field contents:

Donald J. Hunt Jr.

We can see that my final expression would be:

substr(Contact1->Contact, 15, 4)

That’s a far cry from the 234 character expression shown above, but it is in effect what I am accom-
plishing in the expression. I wanted to mention the 234 character length, as you’ll remember that I
explained earlier, that there is a 250 character limit per line, and I am bearing down on that limita-
tion. However, you can see that quite a bit of expression can be written within that 250 character
limitation. You must always keep in mind the limitations imposed upon you by the Lookup.ini.

Having said all of that, I have to continue with our comparison list. What if none of the Lookup vari-
ables had matched? What should GoldMine do then? GoldMine would fail all tests, and in doing so,
with no other provision, GoldMine would enter a blank into the field. However, I have foreseen this
possibility, and told GoldMine that if all of the Lookup variables fail, then to restuff what you believed
to be the last name originally, back into the LastName field. I do that with my Otherwise clause.

Otherwise = &LastName

I use the GoldMine macro, &LastName (refer to Apendix B), to let GoldMine reprocess the Contact
field, using its own expression, to produce the characters to be pushed into the LastName field.

Finally, because the contents of the Contact field may change through the course of time, I must as-
sume that a value was previously contained in the LastName field, and, in doing so, I must instruct
GoldMine to overwrite that field with the newer information. I do that with the statement that you will,
by now, recognize as:

Overwrite = 1

You must remember that even when a new record is created, that as long as there is something in
the Contact field, there will always be something in the LastName field, and that you must account
for that fact in your Lookup.ini instruction set.

Next, I will examine the use of a Lookup.ini for the running of an external application. One typical
example of this need is caused by the limitations of the Lookup.ini itself. One of my clients had ter-
ritories assigned by zip codes. A Lookup.ini to handle the stuffing of several fields based upon all of
the zip codes in the United States would far exceed the limitations of the Lookup.ini (not necessarily
true with todays operating systems). Sometimes, in these cases, I have tried to combine zip codes
into groups to reduce the size of the Lookup.ini. In most cases, however, this has failed. I could eas-
ily create an external application that looks through a zip code database for the proper information,
and then stuffs that information back into the appropriate GoldMine fields. Although I don’t go into
the details of the inner workings of the external application in this book, I must know how to execute
that application once it has been created should a field change. Additionally, as I’ll explain later,
you could have an application run when a new record is created, or when a record is edited in any
of the main GoldMine tables. Let’s look at the case where an application needs to be run when the
contents of the Contact1->Key1 field has changed.

[AutoUpdate]
 Key1 = Key1

[Key1]
 Run = C:\AnyPath\ZipCode.exe
 RunFlags = 2

This is the piece of code that should allow me to do that. I am watching the Key1 field for a change,
and should any change occur, I am instructing GoldMine to process the instruction set for the Key1
field.

Running Ex-
ternal Applica-
tions

Note
You may include an AutoUpdate ac-
tion before running your external ap-
plication.

Tip
You must include the path to the ex-
ecutable if the executable is not in the
windows default search path.

The Lookup.ini
GoldMine Premium - The Definitive Guide

135

My first statement under the Key1 instruction set is to tell GoldMine which application to run. I do this
with the Run statement. GoldMine requires that I set flags to tell it under which conditions the Run
statement is acceptable to execute. Obviously it is to be run if the Key1 field changes, but you must
consider that as an .and. inclusion. That means that not only must the Key1 field have changed, but
the conditions specified by the RunFlags statement must be met as well.

The RunFlags statement value is the sum of the values for three possible conditions. These condi-
tions are:

Run when the field’s lookup value is found		 =	 1
Run when the field is updated via the [AutoUpdate] section	=	 2
Run when the field is updated via Automatic Processes	 =	 4

As I do not have any Lookup values to find, and I do not want the application to run during our run-
ning of the Automated Processes, I have chosen to use 2 as the value in our RunFlags statement.
Should you have a Lookup list, and you desire to have this executable run during your running of
the Automated Processes, then you would have to use the value of 7 which is the sum of the three
possible values.

In this example I will ask the Lookup.ini to watch for a change in the Key1 field, and with that change,
if the value appears in the lookup list of items to run an application. If the value is not included in the
lookup list of values, then do not run the application.

[AutoUpdate]
 Key1 = Key1

[Key1]

 Lookup1 = upper(trim(Contact1->Key1))

 DD = Dave Dunlap
 DJ = DJ Hunt
 Overwrite = 1

 Run = Calc.exe
 RunFlags = 3

With RunFlags set to 3, when a lookup value is found in the list (in this case DD or DJ), the field
is updated accordingly, and then, after the field update, the Calc application is run automatically.
Placing any other value in the Key1 field, and absolutely nothing will happen. The field will not be
updated, nor will the external application be run.

Now we need to look at the other method for running external applications using the Lookup.ini. As I
stated previously, when a new record is created, [OnNewRun], or when a record is edited, [OnEdit-
Run] in any of the main tables, you may have a need to run an external application. These two sec-
tions of the Lookup.ini are independent of the [AutoUpdate] section, and they are neither controlled
by it, nor react to it. Their statements are tested for validity at all times, and should a condition be
met, then the associated executable will be launched.

[OnNewRun]

 Cal-S = SaleCApp.exe
 Cal-C = CallCApp.exe
 Cal = CalApp.exe

 ContHist-S = SaleHApp.exe
 ContHist-CI = InCallHApp.exe
 ContHist = HistApp.exe

 ContSupp-P = DetailApp.exe
 Contact1 = NewContact.exe

 Otherwise = AnyOldApp.exe
 AppendRecNo = 1
 DisableFromAP = 1

The sample above is similar to the one that is supplied by GoldMine. The syntax for the [OnNew-
Run] and [OnEditRun] is identical with the exception that the former applies only to newly created
records of the specified type, while the latter applies only to those records of a specified type that
have been edited.

In both cases you must supply the section header. In the sample case I used [OnNewRun], but I
could have just as easily used [OnEditRun]. In these sections, one defines the left hand side of the
equation with the table and/or the table record type that would required to be added or edited for the
application on the right hand side of the equation to be executed.

The Lookup.ini
GoldMine Premium - The Definitive Guide

136

Upon close examination of the sample, you will notice that the tables are identified only by their
names. Consequently, any time a new record is added or edited in the Contact1, Contact2, Cont-
Supp, ContHist, or the Cal tables, the associated executable will be launched. You must use the
table names as they have been identified here.

Alternatively, you may launch an executable based on the addition of, or the editing of a specific type
of record in certain tables. Let’s look at a couple of the lines.

 Cal-S = SaleCalcApp.exe
 Cal-C = CallCalcApp.exe

To identify record types, you must use the table name, a dash, and then the information contained
in the RecType field of the table (refer to The Tables chapter). In the first statement, above, I use
the RecType of S for sales record. Therefore, the addition of, or the editing of a Forecasted Sale
within GoldMine will trigger the launching of the SaleCalcApp.exe executable. Similarly, in the sec-
ond statement, I use the RecType of C for a Call record. If a call is scheduled in, or edited from the
calendar then the CallCalcApp.exe executable will be launched.

Here are the RecTypes that can be used:

Cal			 ContHist			 ContSupp
A	 Appointment	 A 	 Appointment	 C	 Additional Contact
C	 Call Back		 CC	 Call Back		 L	 Linked Document
D	 To-do Action	 CI	 Incoming Call	 O	 Organizational Chart
M	 Message		 CM	 Returned Message	 P	 Detail Record
O	 Other		 CO	 Outgoing Call	 R	 Referral Record
S	 Forecast Sale	 D	 To-do Action
T	 Next Action	 L	 Letter
			 M	 Message
			 O	 Other
			 S	 Sale
			 T	 Next Action

There are no RecTypes contained in either the Contact1 or the Contact2 table.

As with all of the other instruction sets, GoldMine permits the usage of the Otherwise clause. In my
example I used:

 Otherwise = AnyOldApp.exe

While just below that statement, there were two special instructions for this section. They were:

 AppendRecNo = 1
 DisableFromAP = 1

The first, AppendRecNo, instructs GoldMine to append the number of the record at the current
pointer position in the table as a parameter to the launching executable. In the Cal-C statement, if
the record pointer were at RecID BRQ1DSJ#(QQ%R#Y in the calendar table, then the Lookup.ini
launching instruction would look similar to:

 CallCApp.exe BRQ1DSJ#(QQ%R#Y

By using a parameter such as I have described, your external application may make use of the
GoldMine Dynamic Data Exchange (DDE) capability to locate the appropriate record in the Cal
table, and take action against it and/or extract the information from it. In fact, passing this parameter
is the only way for the external application to know where the record pointer is located. In a previous
statement, I mentioned that I wrote an application that would populate fields based on the zip code.
That application had to be instructed as to which record in the Contact1 table to add this information
into. This is the very method that I employed for the launching of that application.

The final statement employed the switch DisableFromAP. This instruction tells GoldMine to disable
all of the options in this section if the newly added record, or edited record resulted as consequence
of the execution of a GoldMine Automated Process.

GoldMine allows the users to create keyboard macros, and these macros could be played through
the appropriate use of your Lookup.ini. The keyboard macros could be played either through an in-
struction set or through the [OnNewRun] or the [OnEditRun] sections of the Lookup.ini. This adds
yet another new level of functionality to your Lookup.ini. Let’s look at a simple Lookup.ini that makes
use of the PlayMacro(<MacroNumber>) function.

[AutoUpdate]
 Key1 = Key1

Tip
If the executable does not reside in
the same directory as the Lookup.ini,
you must disclose the full path to the
executable in your statement.

Note
In the ContHist table, only the first
2 positions of the RecType field are
monitored.

Note
In both statements, a 1 sets the switch
to True, while a 0, or no statement at
all, sets the switch to False.

Note
You cannot believe the GoldMine Pre-
mium Help files on this, as they are
way outdated. Against SQL tables,
where there are no record numbers,
the RecID is passed in lieu of the
RecNo.

Playing Macros

The Lookup.ini
GoldMine Premium - The Definitive Guide

137

[Key1]
 Lookup1 = Key1

 West Coast = &PlayMacro(841)
 East Coast = &PlayMacro(840)

[OnNewRun]
 Contact1 = &PlayMacro(835)

I first ask GoldMine to watch the Key1 field for any change, and, if there is a change, to follow the
instruction set for [Key1]. I then make use of the Lookup1 variable to look at the current value of
the Key1 field, and to compare that to my list of values. If there is a match against West Coast,
then GoldMine is instructed to play the keyboard macro number 841 which belongs to the currently
logged in GoldMine UserID.

You probably would benefit more if I put this into a real scenario. Suppose that every time a new
customer record was added to GoldMine, that you wanted to have that person scheduled for a call
back. You would first record your keyboard macro to schedule a call back activity, and save it to one
of the supplied GoldMine icons. The first icon in the column of icons is number 800, while the next
is 801, and so forth on down the column. As you can see above, it is important that you know the
number of the keyboard macro to be played. I could now employ the [OnNewRun] section of the
Lookup.ini file to watch for all newly created records in the Contact1 table, and as each is created
to play the appropriate macro.

If you are not adept at writing external applications, you can usually circumvent that need by creating
keyboard macros that will perform most of your actions. You can then have those keyboard macros
played through the use of your Lookup.ini. Make sure that you read the sidebar Tips as they contain
some important additional information pertaining to this section.

Your organization may want to standardize their color coding schema for calendar activities. Why
it is a part of the Lookup.ini, I do not know, but it is, hence, I will discuss it now. The Lookup.ini can
have another independent section called [CalClrCode] which identifies your corporate color schema
for calendar activities. Here is a typical example of its usage.

[CalClrCode]
 A = 3
 C = 1
 T = 4
 M = 0
 O = 2

On the left hand side of the equation, you identify the activity that is to receive the specified color
that is contained in the coded number in the right hand side of the equation. Below I have listed the
coding for each side of the equation.

Left Hand Side		 Right Hand Side

A = Appointments	 0 = Bright Blue	 5 = Bright Yellow		 10 = Green
C = Calls		 1 = Bright Purple	 6 = Cyan		 11 = Yellow
T = Next Actions	 2 = Bright Red	 7 = White		 12 = Blue
M = Messages		 3 = Bright Cyan	 8 = Gray		 13 = Purple
O = Other Actions	 4 = Bright Green	 9 = Red		 14 = Dark Grey

One can clearly see that I have asked for my appointments to be colored bright cyan, while my calls
will be colored bright purple on the GoldMine graphical calendar interface. This schema, or the one
that you may develop for your organization, will provide another level of consistency in your orga-
nization. No matter which users graphical calendar that you are examining, the calendars will be
consistently color coded such that everyone will know that it is an appointment if it is bright cyan for
instance. A caveat here: Users may opt to change the color when Scheduling or Modifying a Sched-
uled Activity. Consistency in application usage makes for a better all around use of the GoldMine
application itself. Strive for consistency wherever and whenever you can achieve it in your corporate
development of the GoldMine product.

But wait, we are not finished. FrontRange has now provided a more granular approach to the copor-
ate color coding schema capabilities.

[CalClrCode]
 A = 4
 A-TRG = 5
 C = 1
 C-FUP = 2
 O = 2

Tip
Keyboard macros are user specific.
If you plan to play a keyboard macro
through the use of the Lookup.ini, then
you must assure that the macro num-
ber that is being played is identical for
each and every user in your GoldMine
system.

Tip
Keyboard macros, which move from
the current locked record to another
record, may prevent the calling func-
tion from completing properly. Try to
avoid situations through the Lookup.
ini where the playing keyboard macro
changes to another contact record.

Note
Keyboard macros tend to falter after
extended periods of use for some
unknown reasons. You are advised
to periodically refresh the users Key-
board Macros.

Color Coding
Calendar Ac-
tivities

The Lookup.ini
GoldMine Premium - The Definitive Guide

138

That’s correct, we can now begin to further the ActvCode level. For instance: The A-TRG = 5 state-
ment is stating that if this scheduled Activity: is that of an Appointment type, and if the Code: is TRG
then the color coding for this activity should be 5 or Bight Yellow. Actually, this capability existed
before GoldMine Premium 8.5.1.12, which is the version that I’m currently writing this book against,
however, one of my readers brought this to my attention so that I could include it in future books
such as now. You readers are sometimes my best resources. Either way this is way cool, because
now you can use corporate color coding to segregate those special activities like Forecast Sales of
PRO (Prospects).

Using your Lookup.ini, you could generate your own unique identifier for a newly created record, and
have that identifier populate one of your fields.

Why would I want a unique identifier on top of the AccountNo and RecID which are already unique?

GoldMines AccountNo, and RecID employee special higher level characters that are not recognized
by all systems. The unique identifier that I am generating employees only standard characters and
numbers, and can be more easily used when Importing into GoldMine while trying to match existing
GoldMine records for updating.

To accomplish this, I will make use of the Counter() function. There is one thing that is important to
understand before I begin this exercise. The Counter() function stores the number that it produces
in the GoldMine Lookup table.

Why is this important?

That is also a very good question for you to have asked. If you are synchronizing your GoldMine
data, then this number, as it resides in the Lookup table at the time of the synchronization, will
synchronize out to those remote users. This means, in using this number alone, you are very likely
going to generate duplicate numbers if your records are not created from a single location. Someone
could be retrieving the next sequential number on the server while a remote user is retrieving that
same sequential number on their remote GoldMine. Therefore, you must never use the Counter()
function by itself to generate a unique number when there is any chance of synchronization within
your organization. What I propose, knowing that the user login name is unique within GoldMine, is
to append the user login name to a padded form of the counter. This, then, will always generate a
unique number for each record even in a synchronization scenario. Here is the code that I propose
that you employee to achieve this unique number.

[AUTOUPDATE]
 NewRecord = Key5

[KEY5]
 Otherwise = &&UserName+padl(ltrim(str(counter([AcctNo],1))), 8, [0])

That is quite a mouthful, wouldn’t you say? Obviously, I am watching for a newly created record, and
once GoldMine realizes that a new record has been created, to process the instruction set for the
Key5 field. Simple, now that you know the process, isn’t it? I already know that the leading & in the
Otherwise statement lets GoldMine know to evaluate the remainder of the string as an expression.
The first part of our equation is &UserName, which is a GoldMine macro function (refer to Appendix
B). This macro function extracts the trimmed UserID login name of the active user as a string. I
say trimmed, because, as you are aware, the UserID field can contain up to eight characters. The
&UserName macro only extracts the name from this field, and not any of the additional spaces that
may be present.

To the UserID login name, I am then appending, working from the inner most parenthesis outward,
the Counter() function, the Str() function, the LTrim() function, and finally the PadL() function. All of
these functions are covered in more detail in Appendix A at the end of this book.

However, in pseudo code, I am:

• retrieving the next sequential number for the variable AcctNo, Counter()
• converting that number to a string, Str()
• trimming off any spaces from the left side of the string, LTrim()
• padding the left side of the string to eight characters with the character 0, PadL()

GoldMine Premium contains the Record Typing concept, as I had discussed in Chapter 4. As the
GoldMine Administrator, it is important that you take this into consideration when you are developing
your Lookup.ini.

In Chapter 4, I had discussed employing the Contact1->Key1 field for Record Typing. I had dis-
cussed that this field could identify the underlying record as being either a Buyer, Seller, Agent, or
Property record. I then discussed using one field to hold different information based upon the record
type. Let’s say, for this example, that I am going to use the Contact2->UserDef01 field to hold the

Generating
Your Own
Unique Identi-
fier

Record Typing
(Another Ap-
proach)

Tip
As you are generating a unique ID,
you may wish to protect the field from
changes. You should consider setting
the Update rights: field, for this field
to MASTER, or at least to a group of
users having Master Rights.

The Lookup.ini
GoldMine Premium - The Definitive Guide

139

availability date if this is a record type of Property. While a record type of Buyer, or Seller, this same
field could contain a Status. I am also going to consider in what state the Agent may be located, and
supply the agents name associated with that state. Let’s see how this might look in the Lookup.ini.

[AutoUpdate]
 Key1 = UserDef01

[UserDef01]

 Lookup1 = upper(trim(Contact1->Key1))
 Lookup2 = upper(trim(Contact1->Key1))+upper(trim(Contact1->State))

 PROPERTY = &dtoc(date())
 BUYER = Ready to Purchase
 SELLER = Available for Sale
 AGENTMA = DJ Hunt
 AGENTNH = Davey Crackett
 AGENTME = Waldo Fairchild

I am simply reminding you that Record Typing throws a whole new monkey wrench into the Lookup.
ini development environment. As the GoldMine Administrator, you must take this into consideration
when developing your Lookup.ini.

Many users have asked to have the ability to format a field in a currency format. Many financial insti-
tutions, using GoldMine, have asked me for this capability. Here is a little Lookup.ini code that I have
developed to accomplish this. To use this code you need a character based field, so I added the field:

uDlrFormat, C, 15

Here is the Lookup.ini code to keep the Contact2.uDlrFormat field formatted properly:

[AutoUpdate]
 uDlrFormat = uDlrFormat

[uDlrFormat]
 Lookup1 = alltrim(str(len(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)))))
 +iif(“.” $ Contact2->uDlrFormat, “T”, “F”)

 2F = &”$”+alltrim(Contact2->uDlrFormat)+”.00”
 3F = &”$”+alltrim(Contact2->uDlrFormat)+”.00”
 4F = &”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)),1)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2, 3)+”.00”
 5F = &”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 3, 3)+”.00”
 6F = &”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 3)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 4, 3)+”.00”
 7F = &”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 1)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2, 3)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 5, 3)+”.00”

 5T = &”$”+alltrim(Contact2->uDlrFormat)
 6T = &”$”+alltrim(Contact2->uDlrFormat)
 7T =&”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 1)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2, 6)
 8T =&”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 3, 6)
 9T =&”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 3)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 4, 6)
 10T =&”$”+left(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 1)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 2, 3)+”,”
 +substr(trim(strtran(strtran(Contact2->uDlrFormat, “,”,””),”$”,””)), 5, 6)

Otherwise = &Contact2->uDlrFormat
Overwrite = 1

The premiss behind this code is simple. The Lookup.ini is watching the Contact2.uDlrFormat field
for changes, and, when the field changes, is processing the instruction set for that field (itself). All
the coding is based on the length of the characters in the field after the dollar sign ($) and commas
(,) have been removed. In the Lookup.ini, I append that length to a True or False letter if the value
contains a decimal.

Once I have populated the Lookup1 variable with a value, I assign instruction sets based on that
value. For instance, a Lookup1 value of 7T means that the value in the field, without a dollar sign
or commas, is 7 characters long, and the T means that one of those seven characters is a decimal.
Formatting this number becomes easy. I add back in the $ sign, and add to that the 1st character of
the field, and a comma. To that, I then simply add the rest of the characters.

Currency For-
matting

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

The Lookup.ini
GoldMine Premium - The Definitive Guide

140

A number entered as 1234.56, would be processed, and returned back to the field as $1,234.56 as
would this $1234.56 , or this 1,234.56 if it were entered into that same field. Perfect. This is exactly
what your client was looking to achieve.

I have already commented on how important consistency of data in GoldMine is, and how difficult
that is to achieve. This section of this chapter will cover a Lookup.ini that I had created for my Finan-
cial Institution type of GoldMine usage, however, it contains many examples of the different ways in
which a Lookup.ini can be utilized.

Here are the prerequisite fields that are needed, in addition to the GoldMine default fields, so that
this Lookup.ini will function properly:

UserDef01, C 40
uALabelA, C, 40
uALabelB, C, 40
UserDef02, C, 40
UserDef03, C, 40
uNNCl, C, 20
uNNMa, C, 20
uADearA, C, 20
uADearB, C, 20
uAAddress1, C, 40
uAAddress2, C, 40
uAAddress3, C, 40
uACity, C, 30
uAState, C, 20
uAZip, C, 10
uCTaxID, C, 12
uMTaxID, C, 12
uSSNCl, C, 12
uSSNMa, C, 12

Throughout the Lookup.ini, I will use Comment lines to annotate the functions of the various instruc-
tion sets. These Comment lines will be in bold black, and they will be preceded by a semicolon
(;).

[AutoUpdate]
 NewRecord = UserDef01, Company, LastName, Department, uALabelA, uALabelB, Contact, Dear, 	
		 Secr, UserDef02, UserDef03, uNNCL, uNNMA, uADearA, uADearB
 Contact = LastName, Department, uALabelA, uALabelB, Contact, Dear, Secr, UserDef02, UserDef03,
		 uNNCL, uNNMA, uADearA, uADearB
 State = Country, uAState, uACountry
 Company = UserDef01, Company
 Address1 = uAAddress1
 Address2 = uAAddress2
 Address3 = uAAddress3
 City = uACity
 uAState = uACountry
 Zip = uAZip
 uCTaxID = uCTaxID
 uMTaxID = uMTaxID
 uSSNCl = uSSNCl
 uSSNMa = uSSNMa

[COMPANY]

; This instruction set will consistently enter a Company name into the Company field.
; If the Company name is entered as The Financial Institution, this instruction set will convert
; that name to Financial Institution, The
; Any Company name that does not begin with the word The will remain as entered

 Lookup1=iif(upper(left(&Company,4))==[THE], ‘A’, ‘Z’)

 A = &substr(&Company, 5, 40)+[, The]
 Otherwise = &&Company

 Overwrite = 1

[CONTACT]

; Here I am looking for any salutation that may have been entered into the Contact field
; and I am stripping it out. Notice the order of processing in the AutoUpdate section
; above as it is critical to the proper processing of this Lookup.ini

 Lookup1 = iif(upper(left(&Contact, 10)) == [MR. & MRS.], [A], [Z])
 Lookup2 = iif(upper(left(&Contact, 8)) == [MR & MRS], [C], [Z])
 Lookup3 = iif(upper(left(&Contact, 4)) == [MRS.], [D], [Z])

Lookup.ini Raz-
zle - Dazzle

The Lookup.ini
GoldMine Premium - The Definitive Guide

141

 Lookup4 = iif((upper(left(&Contact, 3)) == [MR.] .or. upper(left(&Contact, 3)) == [MRS] .or.
		 upper(left(&Contact, 3)) == [MS.]), [E], [Z])
 Lookup5 = iif((upper(left(&Contact, 2)) == [MR] .or. upper(left(&Contact, 2)) == [MS]), [F], [Z])
 Lookup6 = iif(upper(left(&Contact, 10)) == [DR. & MRS.], [A], [Z])
 Lookup7 = iif(upper(left(&Contact, 8)) == [DR & MRS], [C], [Z])
 Lookup8 = iif(upper(left(&Contact, 3)) == [DR.], [E], [Z])
 Lookup9 = iif(upper(left(&Contact, 2)) == [DR], [F], [Z])

 A = &substr(&Contact, 12, 40)
 B = &substr(&Contact, 14, 40)
 C = &substr(&Contact, 10, 40)
 D = &substr(&Contact, 6, 40)
 E = &substr(&Contact, 5, 40)
 F = &substr(&Contact, 4, 40)
 Otherwise = &&Contact

 Overwrite = 1

[COUNTRY]

; Here I am automatically determining the Country field base on the information entered into
; the State field.

 Lookup1 = iif(trim(&State) $ “MA NY CT VT NH ME RI VA NC TX MI MO KS CA PA FL ND SD HI AL
		 KY ID WI DC”, “A”, “Z”)
 Lookup2 = iif(trim(&State) $ “UT NM AZ NV OH IL OR WA OK WV SC DE CO MD GA MN IN NJ IA NE
		 TN LA AR MS”, “A”, “Z”)
 Lookup3 = iif(trim(&State) $ “ON AB NS MB QC”, “B”, “Z”)

 A = USA
 B = Canada
 Otherwise = &&Country

 Overwrite = 1

[DEAR]

; Here I am looking for any compound names, and stripping them apart for the Dear field.
; For instance, if the Contact name were entered as DJ & Carol Hunt, this instruction set would
; populate the Dear field with DJ & Carol.

; Pay particular attention to the order of processing in the AutoUpdate section as it is
; critical to the proper processing of this Lookup.ini

 Lookup1 = iif([AND] $ upper(&Contact), [A], [Z])
 Lookup2 = iif([&] $ upper(&Contact), [B], [Z])

 A = &&FirstName+[&]+left(strtran(&Contact, &FirstName+[and], []), at([], strtran(&Contact,
		 &FirstName+[and], [])))
 B = &&FirstName+[&]+left(strtran(&Contact, &FirstName+[&], []), at([], strtran(&Contact,
		 &FirstName+[&], [])))
 Otherwise = &&FirstName

 Overwrite = 1

[DEPARTMENT]

; Here I am using the Department field to hold any Salutation or Contact name Prefix.
; For instance, if the Contact name were entered as Dr. and Mrs. DJ & Carol Hunt, this instruction
; set would populate the Department field with Dr. and Mrs..

; Pay particular attention to the order of processing in the AutoUpdate section as it is
; critical to the proper processing of this Lookup.ini

 Lookup1 = iif(upper(left(&Contact, 10)) == [MR. & MRS.], [A], [Z])
 Lookup2 = iif(upper(left(&Contact, 8)) == [MR & MRS], [C], [Z])
 Lookup3 = iif(upper(left(&Contact, 4)) == [MRS.], [D], [Z])
 Lookup4 = iif((upper(left(&Contact, 3)) == [MR.] .or. upper(left(&Contact, 3)) == [MRS] .or.
		 upper(left(&Contact, 3)) == [MS.]), [E], [Z])
 Lookup5 = iif((upper(left(&Contact, 2)) == [MR] .or. upper(left(&Contact, 2)) == [MS]), [F], [Z])
 Lookup6 = iif(upper(left(&Contact, 10)) == [DR. & MRS.], [A], [Z])
 Lookup7 = iif(upper(left(&Contact, 8)) == [DR & MRS], [C], [Z])
 Lookup8 = iif(upper(left(&Contact, 3)) == [DR.], [E], [Z])
 Lookup9 = iif(upper(left(&Contact, 2)) == [DR], [F], [Z])

 A = &left(&Contact, 10)
 B = &left(&Contact, 12)
 C = &left(&Contact, 8)
 D = &left(&Contact, 4)
 E = &left(&Contact, 3)

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

The Lookup.ini
GoldMine Premium - The Definitive Guide

142

 F = &left(&Contact, 2)
 Otherwise = &&Dept

 Overwrite = 1

[LASTNAME]

; Here I am properly populating the LastName field. This uses the same LastName Instruction
; Set discussed earlier in this chapter.

; Pay particular attention to the order of processing in the AutoUpdate section as it is
; critical to the proper processing of this Lookup.ini

 Lookup1 = iif(“,” $ Contact, “A”, “Z”)
 Lookup2 = iif((upper(trim(LastName)) == “JR” .or. upper(trim(LastName)) == “JR.”), “B”, “Z”)
 Lookup3 = iif((upper(trim(LastName)) == “SR” .or. upper(trim(LastName)) == “SR.”), “B”, “Z”)
 Lookup4 = iif((upper(trim(LastName)) == “II” .or. upper(trim(LastName)) == “III”), “B”, “Z”)
 Lookup5 = iif((upper(trim(LastName)) == “ESQ” .or. upper(trim(LastName)) == “ESQ.”), “B”, “Z”)
 Lookup6 = iif((upper(trim(LastName)) == “MD” .or. upper(trim(LastName)) == “MD.”), “B”, “Z”)
 Lookup7 = iif((upper(trim(LastName)) == “PHD” .or. upper(trim(LastName)) == “PHD.”), “B”, “Z”)

 A = &alltrim(substr(&Contact, rat(“ “, substr(&Contact, 1, rat(“,”, trim(&Contact))-1))+1,
		 rat(“,”, trim(&Contact)) - rat(“ “, substr(&Contact, 1, rat(“,”, trim(&Contact))))-1))
 B = &alltrim(substr(&Contact, rat(“ “, substr(&Contact, 1, rat(“ “, trim(&Contact))-1))+1,
		 rat(“ “, trim(&Contact)) - rat(“ “, substr(&Contact, 1, rat(“ “, trim(&Contact))-1))))
 Otherwise = &LastName

 Overwrite = 1

[SECR]

; Here I am using the Secr field to hold Marital Status, and populate it when known.
; For instance, if the Department field contains Mr. & Mrs. the assumption is that they are
; Married.

; Pay particular attention to the order of processing in the AutoUpdate section as it is
; critical to the proper processing of this Lookup.ini

 Lookup1 = iif((upper(trim(Contact1->Department)) == [MR. & MRS.] .or. upper(trim(Contact1-
		 >Department)) == [MR & MRS]), [A], [Z])
 Lookup2 = iif((upper(trim(Contact1->Department)) == [MR. AND MRS.] .or. upper(trim(Contact1-
		 >Department)) == [MR AND MRS]), [A], [Z])

 A = Married
 Otherwise = &Contact1->Secr

 Overwrite = 1

[UAADDRESS1]

; Here I am populating an Alternate Address field with the information from Contact1.Address1
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Address1

[UAADDRESS2]

; Here I am populating an Alternate Address field with the information from Contact1.Address2
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Address2

[UAADDRESS3]

; Here I am populating an Alternate Address field with the information from Contact1.Address3
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Address3

[UACITY]

; Here I am populating an Alternate City field with the information from Contact1.City
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &City

[UACOUNTRY]

; Here I am populating an Alternate Country field with the information from Contact1.State
; Later this information can be changed if the Contact has, let’s say, a summer address.

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

The Lookup.ini
GoldMine Premium - The Definitive Guide

143

 Lookup1 = iif(trim(&State) $ “MA NY CT VT NH ME RI VA NC TX MI MO KS CA PA FL ND SD HI AL
		 KY ID WI DC”, “A”, “Z”)
 Lookup2 = iif(trim(&State) $ “UT NM AZ NV OH IL OR WA OK WV SC DE CO MD GA MN IN NJ IA NE
		 TN LA AR MS”, “A”, “Z”)
 Lookup3 = iif(trim(&State) $ “ON AB NS MB QC”, “B”, “Z”)

 A = USA
 B = Canada
 Otherwise = &&Country

[UADEARA]

; Here I am populating an Alternate Dear field with the information from Contact1.Dear
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Dear

[UADEARB]

; Here I am populating a second Alternate Dear field with the information from Contact1.Dear
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Dear

[UALABELA]

; Here I am populating an Alternate Contact field with the information from Contact1.Contact
; Later this information can be changed if you want to have an alternate Contact representation.

 Otherwise = &Contact

[UALABELB]

; Here I am populating another Alternate Contact field with the information from Contact1.Contact
; Later this information can be changed if you want to have an alternate Contact representation.

 Otherwise = &Contact

[UASTATE]

; Here I am populating an Alternate State field with the information from Contact1.State
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &State

[UAZIP]

; Here I am populating an Alternate Zip field with the information from Contact1.Zip
; Later this information can be changed if the Contact has, let’s say, a summer address.

 Otherwise = &Zip

[uCTaxID]

; Here I am populating a TaxID field for the Client in a proper, and consistent format.
; Let’s say that the user enters 061-307-252. This instruction set would convert that to
; 06-1307252

 Lookup1 = iif(empty(Contact2->uCTaxID), [A], [Z])

 A = &space(0)
 Otherwise = &left(strtran(strtran(Contact2->uCTaxID, [], []), [-], []),2)+[]+substr(strtran(
		 strtran(Contact2->uCTaxID, [], []), [-], []),3,11)

 Overwrite = 1

[uMTaxID]

; Here I am populating a TaxID field for the Spouse in a proper and consistent format.
; Let’s say that the user enters 061-307-252. This instruction set would convert that to
; 06-1307252

 Lookup1 = iif(empty(Contact2->uMTaxID), [A], [Z])

 A = &space(0)
 Otherwise = &left(strtran(strtran(Contact2->uMTaxID, [], []), [-], []),2)+[-]+substr(strtran(
		 strtran(Contact2->uMTaxID, [], []), [-], []),3,11)

 Overwrite = 1

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

The Lookup.ini
GoldMine Premium - The Definitive Guide

144

[uNNCL]

; Here I am populating a Nick Name field for the Client. This Instruction Set is using the
; GoldMine macro, &FirstName, to extract the First Name from the Contact1.Contact field.

 Otherwise = &&FirstName

 Overwrite = 1

[uNNMA]

; Here I am populating a Nick Name field for the Spouse or Significant Other. If the Contact1.Dear ;
field were to contain DJ & Carol, then this Instruction Set would extract Carol from that field.

 Lookup1 = iif([AND] $ upper(&Dear), [A], [Z])
 Lookup2 = iif([&] $ upper(&Dear), [B], [Z])

 A = &strtran(&Dear, &FirstName+[and], [])
 B = &strtran(&Dear, &FirstName+[&], [])

 Overwrite = 1

[USERDEF01]

; Here I am populating an Alternate Company field with the information from Contact1.Company

 Otherwise = &Company

 Overwrite = 1

[USERDEF02]

; Here I am populating a Contact field with a true, and consistent format.
; Let’s say that the Contact name was entered as DJ & Carol Hunt. This Instruction Set would
; extract DJ Hunt and place it into this Contact field.

 Lookup1 = iif(([AND] $ upper(&Dear) .or. [&] $ upper(&Dear)), [A], [Z])

 A = &&FirstName+[]+Contact1.LastName
 Otherwise = &&Contact

 Overwrite = 1

[USERDEF03]

; Here I am populating a Spouse or Significant Other field with a true, and consistent format.
; Let’s say that the Contact name was entered as DJ & Carol Hunt. This Instruction Set would
; extract Carol Hunt, and place it into this Spousal field.

 Lookup1 = iif([AND] $ upper(&Dear), [A], [Z])
 Lookup2 = iif([&] $ upper(&Dear), [B], [Z])

 A = &strtran(&Dear, &FirstName+[and], [])+[]+&LastName
 B = &strtran(&Dear, &FirstName+[&], [])+[]+&LastName
 Otherwise = &space(0)

 Overwrite = 1

[uSSNCl]

; Here I am populating a SSN field for the Client in a proper, and consistent format.
; Let’s say that the user enters 061366738. This instruction set would convert that to
; 061-36-6738

 Lookup1 = iif(empty(Contact2->uSSNCl), [A], [Z])

 A = &space(0)
 Otherwise = &left(strtran(strtran(Contact2->uSSNCl, [], []), [-], []),3)+[-]+substr(strtran(strtran(Contact2-
		 >uSSNCl, [], []), [-], []),4,2)+[-]+right(strtran(strtran(Contact2->uSSNCl, [], []), [-], []),4)

 Overwrite = 1

[uSSNMa]

; Here I am populating a SSN field for the Spouse or Significant Other in a proper, and consistent
; format. Let’s say that the user enters 061366738. This instruction set would convert that to
; 061-36-6738

 Lookup1 = iif(empty(Contact2->uSSNMa), [A], [Z])

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

The Lookup.ini
GoldMine Premium - The Definitive Guide

145

 A = &space(0)
 Otherwise = &left(strtran(strtran(Contact2->uSSNMa, [], []), [-], []),3)+[-]+substr(strtran(strtran(
		 Contact2->uSSNMa, [], []), [-], []),4,2)+[-]+right(strtran(strtran(Contact2->uSSNMa,
		 [], []), [-], []),4)

 Overwrite = 1

I hope, from this example, that you can see how really, and truly powerful the Lookup.ini actual could
be. I’m sure that if you can think it, that you can also do it through the use of your Lookup.ini.

There has been another tool available for consistently formatting data within GoldMine fields for
some years now, and it is called GMTray. John Stillman, when he had nothing better to do, designed
this little ditty as an example for us developers, but it remains today to be a valuable formatting tool.
Additionally, it has the added capability of Starting/Stopping GoldMine at predetermined times on
specific days.

Possibly you have GMTray set up, and
working from your Workstations. If so,
it is time to configure GMTray by right
clicking on the GoldMine treasure chest
in the Workstation System Tray (lower
right-hand corner of Windows), and se-
lecting Configure from the local menu
which will bring up the screen shot
shown here in Figure 6- 2.

The default tab is Time Management,
and it is from here that one may sched-
ule the starting and stopping of Gold-
Mine for Workstations that are always
left running. This was particularly im-
portant in the old dBase versions of
GoldMine, however, it remains a nice
feature even for today’s GoldMine. Why
leave applications running unnecessar-
ily? The first frame, Every, contains
simple checkboxes for the days of the
week that you wish to have GMTray Start/Stop the Workstations GoldMine. Simply check those
days that you wish GMTray Start/Stop GoldMine, and uncheck those days where you do not wish
any activity from GMTray.

Naturally, no matter how many days that you have selected in the Every frame, nothing will happen
unless you have completed the rest of the information in the Time Management tab. The first option
that is of concern to us is whether to o Start GoldMine at: 9:00:00 AM. Obviously, this is the time at
which you wish to have GMTray run your GoldMine application from the Workstation. Selecting this
alone will cause GoldMine to start up to the splash screen, and sit there waiting for a user to login.
Alternatively, they may choose the option o and Login which will utilize the GM Login Information
supplied in that frame to login to GoldMine directly bypassing the splash screen.

Well, once GoldMine is started, and on Workstations that are left running continuously, one may
wish to shut down the application as well. To do so, one would have to select to o Stop GoldMine
at: 5:00:00 PM. For this book, I have
chosen to use the default Start/Stop
times, however, once selected these
times become enabled and the user
may address them as is appropriate to
their schedule.

Lastly, on the Time Management tab,
if one wishes GMTray to log the Work-
station directly into GoldMine, one must
supply the GM User Name: and the
Password: to be utilized for the login in
the GM Login Information frame.

Next, on the Field Watcher tab, we
have the ability to set up GMTray to
watch certain fields within GoldMine for
a change, and when changed, to format
the field as specified. One would select
field to be watched under GM Fields,

Note
Remember that each line is a con-
tinuous line of code. The lines are
wrapped, and indented here for pre-
sentation and readability only.

GMTray
Note

GMTray is supplied to you in the
eBook download as a zipped file. I
would suggest that you unzip these
files to a local folder on every Work-
stations C.:\ drive. Possibly: C:\Gold-
Mine\GMTray...

You should then drag C:\GoldMine\
GMTray\GMTray\obj\Release\GM-
Tray.exe to the Startup folder on that
Workstation.

Now you can either start GMTray.exe
by hand or reboot the Workstation,
and it will start automatically.

Unfortunately, there is no common
shared folder, and GMTray will need
to be configured the same for each
Workstation to enjoy corporate con-
sistency.

Figure 6-2

Figure 6-3

The Lookup.ini
GoldMine Premium - The Definitive Guide

146

and the formatting to take place under
the Format: field. Once set, one would
click on the Add button to send it to the
list of watched fields.

As you can see here in Figure 6-4, I
have set my Key3 field format as a So-
cial Security Number format. Hence,
with GMTray running in the System
Tray, upon entering AB123456789 into
the Key3 field, GMTray would, and did,
convert the value to 123-45-6789.

As shown in Figure 6-3 on the previous
page, there are many other formatting
conditions that can be assigned to any
field. GMTray eliminates the need for
using the Lookup.ini to simply format
fields, and, as a bonus, allows you to
Start & Stop GoldMine automatically on
predetermined days and at predeter-

mined times. For a tool that John developed to show off the API functionality to developers, this is
actually a very practical end user tool, and, best of all, its free.

Figure 6-4

